Answer:
2.2 m/s
Explanation:
<u>solution:</u>
To calculate change in stored energy at desired extension
ΔU = 1/2*k*(δx)^2
= 1/2*3700*(0.37^2-0.180^2)
= 201 N.m
use work energy theorem
ΔU = ΔK = 1/2*m*v^2 = 201
= 2.2 m/s
<u>note:</u>
calculation maybe wrong but method is correct.
Answer and Explanation:
Data provided in the question
Carbon mass = m
Initial speed = v_i
Coefficient = μk
Based on the above information, the expressions are as follows
a. By using the energy considerations the expression for the carton moving distance is
As we know that

where,





b. The initial speed of the carton if the factor of 3 risen, so the expression is




In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is

where D=5.00 m is the distance of the screen from the slits, and

is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:

And from the relationship between frequency and wavelength,

, we can find the frequency of the light: