D) energy required to remove a valence electron
Explanation:
The ionization energy is the energy required to remove a valence electron from an element.
Different kinds of atoms bind their valence electrons with different amount of energy.
- To remove the electrons, energy must be supplied to the atom.
- The amount of energy required to remove the an electron in the valence shell is the ionization energy or ionization potential.
- The first ionization energy is the energy needed to remove the most loosely bound electron in an atom in the ground state.
- The ionization energy measures the readiness of an atom to loose electrons.
Learn more:
Ionization energy brainly.com/question/5880605
#learnwithBrainly
Answer:
An F1 offspring could produce four types of gametes, RY, Ry, rY, and ry. The F2 generation supports the independent-assortment model and refutes the linkage model.
Explanation:
Answer: 207.2
Explanation:
In imprecise terms, one AMU is the average of the proton rest mass and the neutron rest mass. This is approximately 1.67377 x 10 -27 kilogram (kg), or 1.67377 x 10 -24 gram (g). The mass of an atom in AMU is roughly equal to the sum of the number of protons and neutrons in the nucleus.
Atomic radius aka distance from the nucleus to the outermost energy level. The greater this distance, the less electrostatic attraction between these oppositely charged particles.