<span>this may help you
As far as the field goes, the two charges opposite each other cancel!
So E = kQ / d² = k * Q / (d/√2)² = 2*k*Q / d² ◄
and since k = 8.99e9N·m²/C²,
E = 1.789e10N·m²/C² * Q / d² </span>
The potential energy decreases while the kinetic energy increases.
Answer:
Technician A says that this is the normal operation of the ETC self -test is the correct answer.
Explanation:
An engine control unit (ECU), also widely referred to as an engine control module (ECM), is a type of electronic control device that controls an internal combustion engine with a series of actuators to ensure maximum engine performance.
It achieves so by reading values from a multitude of sensors within the engine bay, translating data using multidimensional feedback maps (the so-called lookup tables) and modifying the actuators.
Mechanically fixed and dynamically regulated by mechanical and pneumatic means, air-fuel combination, ignition time, and idle speed were before ECUs.
As soon as the system gets battery voltage, after ignition is turned, the efi computer makes a self-test of all the actuators and sensors, included the ETC.
In a third class lever, the effort is located between the load and the fulcrum. If the fulcrum is closer to the load, then less effort is needed to move the load. If the fulcrum is closer to the effort, then the load will move a greater distance. ... These levers are useful for making precise movements.
From laws of motion:

Where S is the distance/displacement (as you would call it) which is unknown
v = final velocity which is 0m/s (this is because the car stops)
u = initial velocity which is 36m/s (from the data given)
t = time taken for the distance to be covered and it is 6s
Substitute the values, hence:


But this is merely the distance he travelled in the 6 seconds he was trying to stop the car.
Therefore, the distance between the car and the cows = 160-108
Distance = 52m