The kinetic energy before equals K after
Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy

I found this using the app Socratic. When I took physics in high school it helped me so much.
The formula that can be used to obtain a convergent series is given by;
a/1 – r.
<h3>What is a series?</h3>
In mathematics, we define a series as sum of numbers which could be convergent or divergent. In a convergent series, the summation of the numbers approaches a given value.
The formula that can be used to obtain a convergent series is given by;
a/1 – r.
Learn more about a convergent series:brainly.com/question/15415793?
#SPJ11