1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
3 years ago
10

Rotation of the lever OA is controlled by the motion of the contacting circular disk of radius r = 300 mm whose center is given

a horizontal velocity v = 1.64 m/s. Determine the angular velocity ω (positive if counterclockwise, negative if clockwise) of the lever OA when x = 880 mm.
Physics
1 answer:
sergiy2304 [10]3 years ago
3 0

Answer:

The angular velocity is

5.64rad/s

Explanation:

This problem bothers on curvilinear motion

The angular velocity is defined as the rate of change of angular displacement it is expressed in rad/s

We know that the velocity v is given as

v= ωr

Where ω is the angular velocity

r is 300mm to meter = 0.3m

the radius of the circle

described by the level

v=1.64m/s

Making ω subject of the formula and solving we have

ω=v/r

ω=1.64/0.3

ω=5.46 rad/s

You might be interested in
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
What’s the opposite of an electron
Anna007 [38]
As its charge, proton -a positive charged molecule at the center of an atom- is the opposite of the electron -the particle which is orbiting the center of an atom.
7 0
4 years ago
A diver stands on a diving platform 10.0 m above the surface of a pool and leaps upward with an initial speed of 2.5 m/s. how fa
Alexus [3.1K]
<span>The diver is heading downwards at 12 m/s Ignoring air resistance, the formula for the distance under constant acceleration is d = VT - 0.5AT^2 where V = initial velocity T = time A = acceleration (9.8 m/s^2 on Earth) In this problem, the initial velocity is 2.5 m/s and the target distance will be -7.0 m (3.0 m - 10.0 m = -7.0 m) So let's substitute the known values and solve for T d = VT - 0.5AT^2 -7 = 2.5T - 0.5*9.8T^2 -7 = 2.5T - 4.9T^2 0 = 2.5T - 4.9T^2 + 7 We now have a quadratic equation with A=-4.9, B=2.5, C=7. Using the quadratic formula, find the roots, which are -0.96705 and 1.477251164. Now the diver's velocity will be the initial velocity minus the acceleration due to gravity over the time. So V = 2.5 m/s - 9.8 m/s^2 * 1.477251164 s V = 2.5 m/s - 14.47706141 m/s V = -11.97706141 m/s So the diver is going down at a velocity of 11.98 m/s Now the negative root of -0.967047083 is how much earlier the diver would have had to jump at the location of the diving board. And for grins, let's compute how fast he would have had to jump to end up at the same point. V = 2.5 m/s - 9.8 m/s^2 * (-0.967047083 s) V = 2.5 m/s - (-9.477061409 m/s) V = 2.5 m/s + 9.477061409 m/s V = 11.97706141 m/s And you get the exact same velocity, except it's the opposite sign. In any case, the result needs to be rounded to 2 significant figures which is -12 m/s</span>
7 0
3 years ago
I’m so confused. please help. i don’t know what i’m suppose to do
aniked [119]

Answer:

Maybe put them in order ????

Explanation:

4 0
3 years ago
Please dont ask people to be "Bf" and "gf" On this app. This is for school. So all of you please be safe!! Thank you.
Ksju [112]
People do that on here?
4 0
3 years ago
Read 2 more answers
Other questions:
  • Electrical Safety: What should you do to a hot plate before turning it on? More than one answer may be correct. Check that the l
    6·1 answer
  • What's the formula to find out power
    12·1 answer
  • It may seem strange that the selected velocity does not depend on either the mass or the charge of the particle. (For example, w
    7·1 answer
  • Does the following statement describe a function of DNA, a function of RNA, a function of both DNA and RNA, or a function of nei
    15·2 answers
  • As motorists drive onto the acceleration lane, they must get up to the speed limit, _______, find a/an ________ and then _______
    10·1 answer
  • The Number above the elements symobls is the elements atomic number .
    14·1 answer
  • Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.1 m/s. Ignore f
    6·1 answer
  • Light with a wavelength of λ = 614 nm is shone first on a single slit of width w = 3.75 μm. The single slit is then replaced wit
    11·1 answer
  • A roller coaster is traveling at 13 m/s when it approaches a hill that is 400 m long. Heading down the hill, it accelerates at 4
    12·1 answer
  • Fill in the blank.<br> You don’t ____ me thass fine _ ___<br><br> -Man Tiffany
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!