Answer:
ω = 1.83 rad/s clockwise
Explanation:
We are given:
I1 = 3.0kg.m2
ω1 = -5.4rad/s (clockwise being negative)
I2 = 1.3kg.m2
ω2 = 6.4rad/s (counterclockwise being positive)
By conservation of the momentum:
I1 * ω1 + I2 * ω2 = (I1 + I2) * ω
Solving for ω:

Since it is negative, the direction is clockwise.
Answer:
Regular reflection
Explanation:
- Reflection is the phenomenon that occurs when a light wave hits the interface between two different mediums and it bounces off back into the same medium. The angle of reflection (measured between the reflected ray and the perpendicular to the interface) is equal to the angle of incidence (measured between the incident ray and the perpendicular to the interface).
There are two different types of reflection:
- Regular reflection: this occurs when the interface between the two mediums is smooth (such as in the case of the still lake), so all the parallel light waves (which have same angle of incidence) are reflected exactly with the same angle of reflection (so, they come out all with same direction)
- Diffuse reflection: this occurs when the interface between the two mediums is not smooth, so each light ray is reflected with a different angle because it hits the interface with a different angle of incidence.
Therefore, in the case of the still lake, the correct answer is regular reflection.
Answer:C.The tube should be held vertically, perpendicular to the ground.
Explanation: Power lines are mainly overhead power installation that transfer electric energy from one place to another. Electric power lines contains both Magnetic field and Electric field.
Potential difference is the change in the amount of energy carried by an electric circuit from one point to another. TO MAXIMIZE THE POTENTIAL DIFFERENCE BETWEEN ONE END OF THE TUBE AND ANOTHER? THE TUBE SHOULD BE HELD VERTICALLY,PERPENDICULAR TO THE GROUND.
Answer:
option (d) 7.1 kN
Explanation:
Given:
Mass of the car, m = 1600 kg
Acceleration of the car, a = 1.5 m/s²
Coefficient of kinetic friction = 0.3
let the tension be 'T'
Now,
ma = T - f .................(1)
where f is the frictional force
also,
f = 0.3 × mg
where g is the acceleration due to the gravity
thus,
f = 0.3 × 1600 × 9.81 =
therefore,
equation 1 becomes
1600 × 1.5 = T - 4708.8
or
T = 2400 + 4708.8
or
T = 7108.8 N
or
T = 7.108 kN
Hence,
The correct answer is option (d) 7.1 kN

You just do the calculations.