1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gizmo_the_mogwai [7]
3 years ago
10

A student was producing 75 watts of power while applying a constant force of 225 newtons to slide a box of books 2.0 meters acro

ss the floor. How long did it take the student to slide the box of books?
Physics
1 answer:
oksano4ka [1.4K]3 years ago
8 0

Answer:

time taken = 6 secs

Explanation:

Power (P) = Force(F) * displacement(d)/ TIME (t)

    75= 225 * 2.0/t

t= 225*2/75

t= 6 sec

You might be interested in
considere que o calor específico de um material presente nas cinzas seja c=0,8j/gc. Supondo que esse material entre na turbina a
drek231 [11]

Answer:

3120J

Explanation:

Given parameters:

C  = Specific heat capacity  = 0.8J/g°C

Initial temperature  = 20°C

Mass given   = 5g

Final temperature  = 800°C

Unknown:

Energy given to the mass  = ?

Solution:

To find the energy given to the mass, let us simply use the expression below:

          H   =   m   c   ΔT

H is the unknown, the energy supplied

m is the mass of the substance

c is the specific heat capacity

ΔT is the change in temperature

Input the variables;

            H    = 5  x   0.8    x    (800 - 20)  = 3120J

7 0
3 years ago
for any object suspended by any number of ropes, wires, or chains, how is the total amount of tension (tension in each rope adde
Sveta_85 [38]

Answer:

To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.

Explanation:

The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]

For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.

As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.

Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.

7 0
3 years ago
Which type of heat transfer causes your face to feel warm when you sit in the sun?
MA_775_DIABLO [31]

Answer:

Radiation

Explanation:

The sun radiates energy to the earth to make it warmer near the equator.

6 0
3 years ago
A particle travels clockwise on a circular path of diameter​ R, monitored by a sensor on the circle at point​ P; the other endpo
kotykmax [81]

We make a graphic of this problem to define the angle.

The angle we can calculate through triangle relation, that is,

sin\theta = \frac{c}{QP}\\sin\theta = \frac{c}{R}\\\theta=sin^{-1}\frac{c}{R}

With this function we should only calculate the derivate in function of c

\frac{d\theta}{dc} = \frac{1}{\sqrt{1-\frac{c^2}{R^2}}}(\frac{c}{R})'\\\frac{d\theta}{dc} = \frac{1}{\sqrt{R^2-c^2}}

That is the rate of change of \theta.

b) At this point we need only make a substitution of 0 for c in the equation previously found.

\frac{d\theta}{dc}\big|_{c=0} = \frac{1}{\sqrt{R^2-0}}\\\frac{d\theta}{dc}\big|_{c=0} = \frac{1}{R}

Hence we have finally the rate of change when c=0.

6 0
3 years ago
Is kinetic energy is always transformed into potential energy.
serious [3.7K]
Potential energy is energy stored in an object due to its position or arrangement. Kinetic energy is energy of an object due to its movement - its motion. All types of energy and be transformed into other types of energy. This is true for potential and Kinetic energy as well.
6 0
2 years ago
Other questions:
  • Similarity between mass and charge
    5·1 answer
  • when you see something, your brain processes the visual information so that you are aware of it. Most of this processing occurs
    14·2 answers
  • PLEASE HELPME!!BRAINLIEST!! The development of new technology requires the evaluation of the overall benefit to cost ratio of th
    10·2 answers
  • What is Law of reflection ?
    15·1 answer
  • You walk with a velocity of 2 m/s north. You see a man approaching you, and from your frame of
    5·1 answer
  • The Sun delivers an average power of 1.575 W/m2 to the top of Neptune's atmosphere. Find the magnitudes of max and max for the e
    7·1 answer
  • Consider shining a laser through a small circular hole. The resulting diffraction pattern will look like a bullseye - a series o
    13·1 answer
  • Samara stands on the ground. Gravity is applying a force to pull her body to the ground while the ground is applying the same am
    13·1 answer
  • Which safety precaution is of primary interest to ALL laboratory activities?
    9·1 answer
  • What will be the pressure exerted by the object if 5,000 N of force<br> area of 200 cm²?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!