Answer:
The acceleration that the jet liner that must have is 2.241 meters per square second.
Explanation:
Let suppose that the jet liner accelerates uniformly. From statement we know the initial (
) and final speeds (
), measured in meters per second, of the aircraft and likewise the runway length (
), measured in meters. The following kinematic equation is used to calculate the minimum acceleration needed (
), measured in meters per square second:

If we know that
,
and
, then the acceleration that the jet must have is:


The acceleration that the jet liner that must have is 2.241 meters per square second.
Answer:
Correct answer is option D
- Wire is on the cylinder axis and carries current i in the direction opposite to that of the current in the shell
Explanation:
- It cannot be Option E, because the magnetic field outside the wire would not be 0 due to the current carried by the conductor
-Also, the parallel wire cannot carry current in the same direction because, that would amplify the magnetic field created by the outer cylinder (since B is dir. proportional to the current) -and now, that leaves only option C and D. If, it is Option C, then that means one side of the cylinder would be more closer to the parallel wire than the other, so there would be different B fields on the two opposite sides of the cylinder. So, that means the answer is option D.
Answer:
50 J
Explanation:
The net force acting on the box is given by the algebraic sum of the two forces, so:

The net work done on the box is equal to (assuming the net force is parallel to the displacement of the object)

where
F = 5 N is the net force on the object
d = 10 m is the displacement of the object
Substituting,

Answer: (1, 30), (2,10), (3,40), (4,20)
Explanation:
Answer:
I would think the answer is color, if the wavelength is within the visible light spectrum. This could be answered in different ways but I'm pretty sure the answer you are looking for is hue/color.