Answer:
Object D
Explanation:
Use Newton's Second Law to determine the acceleration that each object has.
The force applied in both cases is 50 N, but the mass for object C and object D is different.
Let's start with object C first:
- F = ma
- 50 N = 10 kg · a
- 50 = 10a
- 5 = a
The acceleration object C undergoes is 5 m/s².
Now let's calculate object D next:
- F = ma
- 50 N = 2 kg * a
- 50 = 2a
- 25 = a
The acceleration object D undergoes is 25 m/s².
Object D has greater acceleration because it has a smaller mass. The object with a smaller mass will accelerate more in order to satisfy Newton's 2nd Law.
Yes i does. they cause more friction <span />
Answer:
11.78meters
Explanation:
Given data
Mass m = 100kg
Length of cord= 10m
Spring constant k= 35N/m
At the greatest vertical distance, the spring potential energy is equal to the gravitational potential energy
That is
Us=Ug
Us= 1/2kx^2
Ug= mgh
1/2kx^2= mgh
0.5*35*10^2= 100*9.81*h
0.5*35*100=981h
1750=981h
h= 1750/981
h= 1.78
Hence the bungee jumper will reach 1.78+10= 11.78meters below the surface of the bridge
Answer:
1.7N
Explanation:
Force = kx
Where x = spring compression and
K = spring constant
K =85N/m
x = 2.0cm / 100
= 0.02m
Force = 85 x 0.02
= 1.7N