Isothermal Work = PVln(v₂/v₁)
PV = nRT = 2 mole * 8.314 J/ (k.mol) * 330 k = 5487.24 J
Isothermal Work = PVln(v₂/v₁) v₂ = ? v₁ = 19L,
1.7 kJ = (5487.24)In(v₂/19)
1700 = (5487.24)In(v₂/19)
In(v₂/19) = (1700/5487.24) = 0.3098
In(v₂/19) = 0.3098
(v₂/19) =

v₂ = 19*

v₂ = 25.8999
v₂ ≈ 26 L Option b.
Explanation:
If you cannot visualize it, just assume that the distance from station A to B is 420km. Each half is 210km.
When the car travels from A to B, it takes 420/30 = 14 hours.
When the car travels from B to the halfway point, it takes 210/30 = 7 hours.
When the car travels from the halfway point to A, it takes 210/70 = 3 hours.
Total time taken = 14 + 7 + 3 = 24 hours.
Total distance = 420km * 2 = 840km.
Hence, the average speed of the car is 840/24 = 35km/h.
Answer:
the moment of inertia with the arms extended is Io and when the arms are lowered the moment
I₀/I > 1 ⇒ w > w₀
Explanation:
The angular momentum is conserved if the external torques in the system are zero, this is achieved because the friction with the ice is very small,
L₀ = L_f
I₀ w₀ = I w
w =
w₀
where we see that the angular velocity changes according to the relation of the angular moments, if we approximate the body as a cylinder with two point charges, weight of the arms
I₀ = I_cylinder + 2 m r²
where r is the distance from the center of mass of the arms to the axis of rotation, the moment of inertia of the cylinder does not change, therefore changing the distance of the arms changes the moment of inertia.
If we say that the moment of inertia with the arms extended is Io and when the arms are lowered the moment will be
I <I₀
I₀/I > 1 ⇒ w > w₀
therefore the angular velocity (rotations) must increase
in this way the skater can adjust his spin speed to the musician.
This question involves the concepts of density, volume, and mass.
The approximate diameter of a magnesium atom is "3.55 x 10⁻¹⁰ m".
<h3>STEP 1 (FINDING MASS OF INDIVIDUAL ATOM)</h3>
It is given that:
Mass of one mole = 24 grams
Mass of 6 x 10²³ atoms = 24 grams
Mass of 1 atom =
= 4 x 10⁻²³ grams
<h3>STEP 2 (FINDING VOLUME OF A SINGLE ATOM)</h3>

where,
= density = 1.7 grams/cm³- m = mass of single atom = 4 x 10⁻²³ grams
- V = volume of single atom = ?
Therefore,

V = 2.35 x 10⁻²³ cm³
<h3>STEP 3 (FINDING DIAMETER OF ATOM)</h3>
The atom is in a spherical shape. Hence, its Volume can be given as follows:
![V =\frac{\pi d^3}{6}\\\\d=\sqrt[3]{ \frac{6V}{\pi}}\\\\d=\sqrt[3]{ \frac{6(2.35\ x\ 10^{-23}\ cm^3)}{\pi}}](https://tex.z-dn.net/?f=V%20%3D%5Cfrac%7B%5Cpi%20d%5E3%7D%7B6%7D%5C%5C%5C%5Cd%3D%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6V%7D%7B%5Cpi%7D%7D%5C%5C%5C%5Cd%3D%5Csqrt%5B3%5D%7B%20%5Cfrac%7B6%282.35%5C%20x%5C%2010%5E%7B-23%7D%5C%20cm%5E3%29%7D%7B%5Cpi%7D%7D)
d = 0.355 x 10⁻⁷ cm = 3.55 x 10⁻¹⁰ m
Learn more about density here:
brainly.com/question/952755