Answer:
The answer is given below
Explanation:
u is the initial velocity, v is the final velocity. Given that:

a)
The final velocity of cart 1 after collision is given as:

The final velocity of cart 2 after collision is given as:

b) Using the law of conservation of energy:

D garden salad : )
A heterogenous mixture can be easily taken apart visually/physically
Hey There,
Question: "<span>A student gives a brief push to a block of dry ice. A moment later, the block moves across a very smooth surface at a constant speed. When drawing the free body diagram for the block of dry ice moving at a constant speed, the forces that should be included are: (select all that apply)"
Answer: C. Force Of Friction
B. Force
If This Helps May I Have Brainliest?</span>
Answer:
Explanation:
Given that
Force constant k=8.6N/m
Weight =64g=64/1000=0.064kg
Extension is 45mm=45/1000= 0.045m
It will have it highest spend when the Potential energy is zero
Therefore energy in spring =change in kinetic energy
Ux=∆K.e
½ke² = ½mVf² — ½mVi²
Initial velocity is 0, Vi=0m/s
½ke² = ½mVf²
½ ×8.6 × 0.045² = ½ ×0.064 ×Vf²
0.0087075 = 0.032 Vf²
Then, Vf² = 0.0087075/0.032
Vf² = 0.2721
Vf=√0.2721
Vf= 0.522m/s
The time it will have this maximum velocity?
Using equation of motion
Vf= Vi + gr
0.522= 0+9.81t
t=0.522/9.81
t= 0.0532sec
t= 53.2 milliseconds