Force is mass times acceleration. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
Question:
A particle moving along the x-axis has a position given by x=(24t - 2.0t³)m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero
Answer:
24 m/s
Explanation:
Given:
x=(24t - 2.0t³)m
First find velocity function v(t):
v(t) = ẋ(t) = 24 - 2*3t²
v(t) = ẋ(t) = 24 - 6t²
Find the acceleration function a(t):
a(t) = Ẍ(t) = V(t) = -6*2t
a(t) = Ẍ(t) = V(t) = -12t
At acceleration = 0, take time as T in velocity function.
0 =v(T) = 24 - 6T²
Solve for T
Substitute -2 for t in acceleration function:
a(t) = a(T) = a(-2) = -12(-2) = 24 m/s
Acceleration = 24m/s
Answer:
d = 9.69 cm
Explanation:
given,
mass of the block = 1.2 Kg
spring force constant(k) = 730 N/m
spring is compressed = d = ?
rough patch width = 5 cm
μ_k = 0.44
work done by friction = energy lost




d = 0.0969 m
d = 9.69 cm
Answer:
they require a medium
Explanation:
your welcome.............
Gravitional force
It depends on your mass