Answer:
F = 0.00156[N]
Explanation:
We can solve this problem by using Newton's proposed universal gravitation law.

Where:
F = gravitational force between the moon and Ellen; units [Newtos] or [N]
G = universal gravitational constant = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1= Ellen's mass [kg]
m2= Moon's mass [kg]
r = distance from the moon to the earth [meters] or [m].
Data:
G = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1 = 47 [kg]
m2 = 7.35 * 10^22 [kg]
r = 3.84 * 10^8 [m]
![F=6.67*10^{-11} * \frac{47*7.35*10^{22} }{(3.84*10^8)^{2} }\\ F= 0.00156 [N]](https://tex.z-dn.net/?f=F%3D6.67%2A10%5E%7B-11%7D%20%2A%20%5Cfrac%7B47%2A7.35%2A10%5E%7B22%7D%20%7D%7B%283.84%2A10%5E8%29%5E%7B2%7D%20%7D%5C%5C%20F%3D%200.00156%20%5BN%5D)
This force is very small compare with the force exerted by the earth to Ellen's body. That is the reason that her body does not float away.
Answer:
94.67 N
Explanation:
Consider a free body diagram with force, F of 41 N applied at an angle of 37 degrees while the weight acts downwards. Resolving the force into vertical and horizontal components, we obtain a free body diagram attached.
At equilibrium, normal reaction is equal to the sum of the weight and the vertical component of the force applied. Applying the condition of equilibrium along the vertical direction.

Substituting 70 N for W, 41 N for F and
for 37 degrees
N=70+41sin37=94.67441595 N and rounding off to 2 decimal places
N=94.67 N
Answer:
Speed at which the ball passes the window’s top = 10.89 m/s
Explanation:
Height of window = 3.3 m
Time took to cover window = 0.27 s
Initial velocity, u = 0m/s
We have equation of motion s = ut + 0.5at²
For the top of window (position A)

For the bottom of window (position B)


We also have

Solving

So after 1.11 seconds ball reaches at top of window,
We have equation of motion v = u + at

Speed at which the ball passes the window’s top = 10.89 m/s
If a person drives 4 miles east, then 3 miles west, here are the facts:
They are 1 mile away from where they started.
They have driven a total of 7 miles.
The distance between two particles that are <em>in phase</em>