Generally speaking, organic molecules tend to dissolve in solvents that have similar physical properties. A good rule of thumb is that "like dissolves like". Meaning, polar compounds can dissolve polar compounds and nonpolar compounds can dissolve nonpolar compounds.
To apply this to the current problem, we are told that the brushes are being cleaned with vegetable oil or mineral oil. In this case, the oils are used as solvents. In order for these solvents to be effective, the compounds they are trying to dissolve must be similar in structure and properties to other oils. Therefore, vegetable oil or mineral oil will be most effective in removing oil-based paints, as these will have the similar properties needed to dissolve in the oil solvents.
An intensive property is a property that does not change depending on how much mass of it you are considered. An example of an intensive property is density. No matter how much water you examine, the density of the sample will be 1g/cm³.
The answer is C, hydrogen gas. This is because in single replacement reactions, the single element (here Magnesium) replaces whichever element in the compound it corresponds to. Because Mg loses electrons since it’s a metal, it will replace the element which also loses electrons, which is Hydrogen here. So when they switch places, MgCl2 and H2 are made— and H2 is the hydrogen gas.
Methane is lighter than air, having a specific gravity of 0.554. It is only slightly soluble in water. It burns readily in air, forming carbon dioxide
and water vapour; the flame is pale, slightly luminous, and very hot.
The boiling point of methane is −162 °C (−259.6 °F) and the melting
point is −182.5 °C (−296.5 °F). Methane in general is very stable, but
mixtures of methane and air, with the methane content between 5 and 14
percent by volume, are explosive. Explosions of such mixtures have been
frequent in coal mines and collieries and have been the cause of many
mine disasters.