Answer : The number of molecules present in nitrogen gas are,
Explanation :
First we have to calculate the moles of nitrogen gas by using ideal gas equation.
where,
P = Pressure of
gas =
(1 atm = 760 mmHg)
V = Volume of
gas = 985 mL = 0.982 L (1 L = 1000 mL)
n = number of moles
= ?
R = Gas constant =
T = Temperature of
gas =
Now put all the given values in above equation, we get:

Now we have to calculate the number of molecules present in nitrogen gas.
As we know that 1 mole of substance contains
number of molecules.
As, 1 mole of
gas contains
number of molecules
So,
mole of
gas contains
number of molecules
Therefore, the number of molecules present in nitrogen gas are,
Answer:
It would be True
Explanation:
Because they both have the same push of gravity. Gravity affects all objects equally. If you drop an egg and a watermelon at the same time they would both collide with the floor at the same time.
The organelles and substances inside the organelles are smaller. On a molecular level a group that are smaller are hadrons, which are the group of particles that consist of protons and neutrons. Even smaller than hadrons are leptons, which consist of neutrinos, electons, and MANY others.
We assume that we have Ka= 4.2x10^-13 (missing in the question)
and when we have this equation:
H2PO4 (-) → H+ + HPO4-
and form the Ka equation we can get [H+]:
Ka= [H+] [HPO4-] / [H2PO4] and we have Ka= 4.2x10^-13 & [H2PO4-] = 0.55m
by substitution:
4.2x10^-13 = (z)(z)/ 0.55
z^2 = 2.31x 10^-13
z= 4.81x10^-7
∴[H+] = 4.81x10^-7
when PH equation is:
PH= -㏒[H+]
= -㏒(4.81x10^-7) = 6.32