Answer:
This done such that when a reaction is in equilibrium and disturb by and external force which would prevent its completion its adjust so as to offset that external force and still go on to completion
Answer:
9
Explanation:
Given parameters:
Concentration of OH⁻ [OH]= 1 x 10⁻⁹M
Solution:
To find the pOH of a solution can be found using the expression below:
pOH = -log₁₀[OH]
[OH] = concentration of the hydroxyl ions
pOH = -log₁₀(1 x 10⁻⁹) = - x -9 = 9
Blank 1: polar
The difference in electronegativity between N and H causes electrons to preferentially orbit N, making the bond polar.
Blank 2: trigonal pyramidal
There are four “things” attached to N - 3 H’s and 1 lone pair of electrons. The four things together are arranged into a tetrahedral formation. However, the lone pairs don’t actually contribute to the shape of the molecule per se; it’s only the actual atoms that do. The lone pair creates a bit of repulsion that pushes the 3 H’s down, creating a trigonal pyramidal shape (as opposed to a trigonal planar one).
Blank 3: polar
The molecule as a whole is also polar because the “things” around it, though arranged in a tetrahedral pattern, are not all the same. The side of the molecule with the lone pair is slightly negative, while the side with the 3 H’s is slightly positive due to the differences in electronegativity described above.
Answer:
calcium is a metal and metals are good conductors of electricity as they contain mobile electrons.
Explanation:
Answer:
C₃H₉N
Explanation:
The empirical formula of a compound is the fundamental and basic possible formula that shows the mole ratio of the atoms of each element in a molecule of the compound.
mole ratio of carbon = 60.94/12 = 5.078
mole ratio of hydrogen = 15.36/1 = 15.36
mole ratio of nitrogen = 23.70/14 = 1.693
Now; we will divide by the smallest value
So; carbon = 5.078/1.693 = 2.99 ≅ 3.0
hydrogen = 15.36/1.693 = 9.07 ≅ 9.0
nitrogen = 1.693/1.693 = 1 ≅ 1
Thus, the empirical formula is = C₃H₉N