02(g) = 0 kj/mol
<span>CO2 (g) = -393.5 kj/mol </span>
<span>H20(g) = -241.8 kj/mol </span>
<span>H total = -5094 kJ
</span>5094kJ = [8(-393.5) + 9(-241.8)] - [X + 12.5(0)]
<span>-5094 kJ = [-3148 + (-2176.2)] - [x + 0] </span>
<span>-5094 kJ = -5324.2 - x </span>
<span>add -5324.2 to -5094 </span>
<span>to get +230.2 = -x </span>
<span>move the negative to the other side </span>
<span>and you get -230 kj/mol</span>
Answer is: <span>decomposition.
Balanced chemical reaction: H</span>₂CO₃ → CO₂ + H₂O.
H₂CO₃ is carbonic acid.
CO₂ is carbon (IV) oxide or carbon dioxide.<span>
Chemical decomposition is the separation of
a single chemical compound (in this example </span>carbonic acid<span>) into
its two or more simpler compounds (in this example water and
carbon dioxide).</span>
Answer:
That means that if you are calculating entropy change, you must multiply the enthalpy change value by 1000. So if, say, you have an enthalpy change of -92.2 kJ mol-1, the value you must put into the equation is -92200 J mol-1
Answer:
k = [F2]² [PO]² / [P2] [F2O]²
Explanation:
In a chemical equilibrium, the equilibrium constant expression is written as the ratio between the molar concentration of the products over the molar concentration of the reactants. Each species powered to its reaction coefficient. For the equilibrium:
P2(g) + 2F2O(g) ⇄ 2PO(g) + 2F2(g)
The equilibrium constant, k, is:
k = [F2]² [PO]² / [P2] [F2O]²
I think B but i'm not for sure