Answer #1 is "there is 2.5 grams of solute in every 100 g of solution."
We calculate for 2.5% by mass solution by dividing the mass of the solute by the mass of the solution and then multiply by 100.
Answer #2 is "that mass ratio would be 2.5/100 or 2.5 grams of solute/100 grams of solution."
We weigh out 2.5 grams of solute and then add 97.5 grams of solvent to make a total of 100 gram solution, that is,
mass of solute / mass of solution = 2.5g solute / (2.5g solute + 97.5g solvent)
= 2.5g solute / 100g solution
Answer#3 is "a solution mass of 1 kg is 10 times greater than 100 g, thus one kilogram (1 kg) of a 2.5% ki solution would contain 25 grams of ki."
We multiply 10 to each mass so that 100 grams becomes 1000grams since 1000 grams is equal to 1 kg:
mass of solute / mass of solution = 2.5g*10/[(2.5g*10) + (97.5g*10)]
= 25g solute/(25g solute + 975g solvent)
= 25g solute/1000g solution
= 25g solute/1kg solution
Answer: The force of attraction occurring between two masses.
<span>The answer to your question is the 3rd option </span>
Answer : The correct answer is the Bonds were broken on the reactants and new bonds were formed on the products.
Explanation :
In the chemical reaction, some substances react together are called reactant and the substance are formed are called product.
During the chemical reaction, the atoms of reactants rearranged to make products. There are on atoms are added or taken away in the reaction. This is known as the conservation of atoms.
For example : carbon atom react with the oxygen to form carbon dioxide.

From the given diagram, we conclude that the arrangement of molecules are different on both side of the mixture of reaction.
On the reactant side, the red molecules bonded with red molecule and the black molecule with white molecules. On the other hand i.e product side, the red molecule bonded with black molecule and white molecule bonded with red molecules. The molecular arrangement are different on both side of the reaction mixture.
Therefore, the correct answer is the Bonds were broken on the reactants and new bonds were formed on the products.
The answer is c hopefully I helped you