Answer:
Initial velocity will be 1.356 m/sec
Explanation:
Let the initial speed = u
Angle at which rubber band is launched = 37°
Horizontal component of initial velocity 
Time is given as t = 1.20 sec
Distance in horizontal direction = 1.30 m
We know that distance = speed × time
So time 


So initial velocity will be 1.356 m/sec
To find the total number of miles traveled by a person, we add the distance that he has traveled: 3.0 + 5.00 + 4.000.
Now, to find the accurate number of significant figures when adding measurements, the basic rule for addition is to use the least number of decimal places when reporting the result.
Now, since 3.0 has the least number of decimal places, we report the sum with 1 decimal place and have 12.0 miles as the total distance traveled by the person to reach his destination.
Answer: 12.0 miles
Answer:
Clockwise direction
Explanation:
In a case of a wire carrying a current, the right hand rule is used.
The thumb in the direction of current while the finger curl around in the direction of the magnetic field.
The right hand rule applies to a current in a straight line wire.
If the direction a wire carrying a current perpendicularly into this page, the direction of the magnetic field will be in a clockwise direction .
C. Electrical current increases as resistance decreases
Answer:
fringes move farther
Explanation:
The relation between the distance between the fringes is given by
y = Dλ/d
where, D is the distance between the plane of slit and the screen
d is the width of slit, λ is the wavelength of light used.
As the slit made narrower, that means d decreases, the value of y increases, that means the fringes move farther.