Given :- A resistor of 150 ohm, hence Resistance (R) = 150 ohm
Potential Difference (v) = 24 V
Current (I) = ?
V = IR
24 = I × 150
I = 24/150
I = 0.16 ampere
hope it helps!
"Ionization energy" is the one among the following choices given in the question that <span>decreases with increasing atomic number in Group 2A. The correct option among all the options that are given in the question is the third option or option "C". I hope that the answer has helped you.</span>
The answer is c you got to look for answers that make sense
We know the equation
weight = mass × gravity
To work out the weight on the moon, we will need its mass, and the gravitational field strength of the moon.
Remember that your weight can change, but mass stays constant.
So using the information given about the earth weight, we can find the mass by substituting 100N for weight, and we know the gravity on earth is 10Nm*2 (Use the gravitational field strength provided by your school, I am assuming yours in 10Nm*2)
Therefore,
100N = mass × 10
mass= 100N/10
mass= 10 kg
Now, all we need are the moon's gravitational field strength and to apply this to the equation
weight = 10kg × (gravity on moon)
Answer:
Explanation:
We shall apply concept of impulse to solve the problem .
Impulse = force x time
impulse = change in momentum
force x time = change in momentum
initial speed u = 24 km/h = 6.67 m /s
final speed v = 65 km/h = 18.05 m /s
change in momentum = m v - mu
= m ( v-u )
= 1350 ( 18.05 - 6.67 )
= 15363 kg m/s
F x 18 = 15363
F = 853.5 N .