The specialized type of cell in human eyes which help to detect color, a layer at the back of the eyeball containing cells that are sensitive to light and that trigger nerve impulses that pass via the optic nerve to the brain, that is called a retina.
CH4 + 2O2 --> CO2 + 2H2O
On the reactant side you start with 1 carbon, 4 hydrogen, and 2 oxygen. On the product side you start with 1 carbon, 2 hydrogen, and 3 oxygen. In order to get them equal, you need to put 2 in front of the H2O which equals out the number of Hydrogen on both sides. But Now we must balance the Oxygens. Because of the H2O we now have 4 Oxygens on the product side and only 2 on the reactant. In order to balance this, we put a 2 in front of the O2 giving us 4 hydrogen on both sides, Balancing the equation
I'm pretty sure its the weight of the book
if 105 grams burns completely
therefore
105 ×22.4/48=49
Answer:
0.03g/mL
Explanation:
Given parameters include:
Five μL of a 10-to-1 dilution of a sample; This implies the Volume of dilute sample is given as 5 μL
Dilution factor = 10-to-1
The absorbance at 595 nm was 0.78
Mass of the diluted sample = 0.015 mg
We need to first determine the concentration of the diluted sample which is required in calculating the protein concentration of the original solution.
So, to determine the concentration of the diluted sample, we have:
concentration of diluted sample = 
=
(where ∝ was use in place of μ in the expressed fraction)
= 0.003 mg/μL
The dilution of the sample is from 10-to-1 indicating that the original concentration is ten times higher; as such the protein concentration of the original solution can be calculated as:
protein concentration of the original solution = 10 × concentration of the diluted sample.
= 10 × 0.003 mg/μL
= 0.03 mg/μL

= 0.03g/mL
Hence, the protein concentration of the original solution is known to be 0.03g/mL