Answer:
Speed of both blocks after collision is 2 m/s
Explanation:
It is given that,
Mass of both blocks, m₁ = m₂ = 1 kg
Velocity of first block, u₁ = 3 m/s
Velocity of other block, u₂ = 1 m/s
Since, both blocks stick after collision. So, it is a case of inelastic collision. The momentum remains conserved while the kinetic energy energy gets reduced after the collision. Let v is the common velocity of both blocks. Using the conservation of momentum as :



v = 2 m/s
Hence, their speed after collision is 2 m/s.
Answer:
Height h= 1.7 m
Explanation:
Supposing we have to find height in meter.
1 feet = 0.3048 m
1 inch = 0.0254 m
Given that:
5 feet
= 5×0.3048
= 1.524 m
and 7 inch = 7×0.0254= 0.1778 m
Therefore total height of a man in meter
5 feet 7 inch = 1.5424+0.1778 =1.7 m
Height h= 1.7 m
Ambassador i believe if not then embassy
Answer:
Cool question! First step is to find the time taken to fall
57
m
, then to find the horizontal velocity needed to cover
24
m
in that time. In this case the answer is
7.0
m
s
−
1
.
Explanation:
This is a less typical projectile motion question, but it's still projectile motion. This means the horizontal and vertical directions can be considered separately. We assume that the initial vertical velocity,
u
y
=
0
m
s
−
1
, and we are trying to find the required initial horizontal velocity,
u
x
.
To find the time taken to fall
57
m
:
s
=
u
t
+
1
2
a
t
2
Since
u
=
0
, we can rearrange this to:
t
=
√
2
s
a
=
√
2
⋅
57
9.8
=
3.41
s
The horizontal velocity will be constant (ignoring air resistance), so to cover
24
m
in
3.41
s
will be given by:
v
=
s
t
→
u
x
=
24
3.41
=
7.0
m
s
−
1
Answer link