Answer:
A. K
Step-by-step explanation:
Remember the trends in the Periodic Table:
- Atomic radii <em>decrease</em> from left to right across a Period.
- Atomic radii <em>increase</em> from top to bottom in a Group.
- Ionic radii of metal cations are <em>smaller</em> than those of their atoms.
Thus, the largest atoms are in the lower left corner of the Periodic Table.
The diagram below shows that K is closest to the lower left, so it is the largest atom. It is also larger than any of the cations.
Answer: 51.9961 g/mol, don't know if it helps :)
Explanation:
Answer: In Galileo’s time, what was considered the “center of everything”? The Earth! All of the planets and even the Sun went around “us”. Of course, when Galileo saw the moons of Jupiter passing in front of the planet, and disappearing to show up again, it was clear to him that these moons went around Jupiter like our moon goes ‘round the Earth.
That did not set well with the Beliefs of the day, and that is at least one answer!
Explanation:
Nitrous Acid.
Hyponitrous acid: H2N2O2
Nitric acid: HNO3
Pernitric acid: HNO
Answer:
The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Explanation:
..[1]
..[2]
..[3]
..[4]
Using Hess's law:
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
2 × [4] = [2]- (3 ) × [1] - (2) × [3]




The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.