<span>1.16 moles/liter
The equation for freezing point depression in an ideal solution is
ΔTF = KF * b * i
where
ΔTF = depression in freezing point, defined as TF (pure) ⒠TF (solution). So in this case ΔTF = 2.15
KF = cryoscopic constant of the solvent (given as 1.86 âc/m)
b = molality of solute
i = van 't Hoff factor (number of ions of solute produced per molecule of solute). For glucose, that will be 1.
Solving for b, we get
ΔTF = KF * b * i
ΔTF/KF = b * i
ΔTF/(KF*i) = b
And substuting known values.
ΔTF/(KF*i) = b
2.15âc/(1.86âc/m * 1) = b
2.15/(1.86 1/m) = b
1.155913978 m = b
So the molarity of the solution is 1.16 moles/liter to 3 significant figures.</span>
Answer:
Fluid power systems perform work by a pressurized fluid bearing directly on a piston in a cylinder or in a fluid motor. A fluid cylinder produces a force resulting in linear motion, whereas a fluid motor produces torque resulting in rotary motion. Within a fluid power system, cylinders and motors (also called actuators) do the desired work. Control components such as valves regulate the system.
I think it is "Known".
Radioactive decay is measured using a formula where the half-life <span>of an isotope is the time it takes for the original nuclei to decay half of its original amount.</span>
Dehydration is removal of water.
In alcohols dehydration is α-β elimination or 1,2 elimination, it means the hydroxyl group will be removed from α-carbon while the hydrogen will be removed from near by carbon.
In case of neopentyl alcohol there is no β hydrogen present on the β carbon [as shown in figure].
The only possible way for it to undergo dehydration is by rearrangement.
The process or mechanism can be understood as:
so the chief product is 2-methylbut-2-ene
The one with higher mass has a higher density because it fits more mass into the same amount of space (volume).