Answer:
0.0129 m
Explanation:
ΔL = FL / (EA)
where ΔL is the deflection,
F is the force,
L is the initial length,
E is Young's modulus,
and A is the cross sectional area.
F = mg = 100 kg × 9.8 m/s² = 9800 N
A = 4.0 mm² × (1 m / 1000 mm)² = 4×10⁻⁶ m²
ΔL = (9800 N) (1.0 m) / ((1.9×10¹¹ Pa) (4×10⁻⁶ m²))
ΔL = 0.0129 m
Complete question is;
When you ride a bicycle, in what direction is the angular velocity of the wheels? A) to your left B) to your right C) forwards D) backwards
Answer:
Option A - to your left
Explanation:
While an object rotates, each particle will have a different velocity:
the 'Speed' component will vary with radius while the 'Direction' component will vary with angle.
All of the velocity vectors are aligned in the same plane.
We can be solve this by choosing a single vector normal to ALL of the possible velocity vectors of the rotating object in that plane.
This convention used is known as "Right-hand rule". The angular velocity vector points along the wheel's axle. For instance, if you Imagine wrapping your right hand around the axle so that your fingers point in the direction of rotation, with your thumb sticking out. You will notice that your thumb points to the left.
Thus;
By right-hand rule, a wheel rotating on a forward - moving bicycle has an angular velocity vector pointing to the rider's left.
So, option A is the correct answer
Answer: C REFRACTION
Explanation: I took the test and got it right lol <3
Answer: The sun’s radiation consists of small, massless packets of energy called photons. They travel seamlessly through space; whenever they strike any object, the object absorbs photons and its energy is increased, which then heats it up.
Explanation:
Answer:
hesadghtyou is you here boiii
Explanation: