1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
3 years ago
8

How do the planets Venus and Neptune differ in terms of atmospheric composition?

Physics
2 answers:
frutty [35]3 years ago
7 0

Answer: The correct option is Option A.

Explanation:

Atmosphere is defined as the layer of gases which form an envelope around a planet.

Venus is the second and Neptune is the last planet of our solar system.

Venus's atmosphere mainly consists of carbon dioxide with trace amounts of nitrogen, argon , helium and neon.

Neptune's atmosphere mainly consists of helium and hydrogen with 2.5 to 3% of methane gas in it.

From the above information, the correct answer comes out to be Option A.

marissa [1.9K]3 years ago
4 0
<span>(A)Venus has carbon dioxide in its atmosphere, while Neptune has methane in its atmosphere.</span>
You might be interested in
Cations have fewer _____ than _____.
FrozenT [24]
Cations are positively charged ions. And for positive charged ions, it means the positive charges, protons, are more than the negative charges, the electrons.

Therefore Cations have fewer electrons than protons.

So the answer is:    c. electrons; protons. 
3 0
3 years ago
Read 2 more answers
A solid sphere of radius 40.0cm has a total positive charge of 26.0μC uniformly distributed throughout its volume. Calculate the
Rudiy27

The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C

R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Q\;(\text{total charge of the solid sphere})=(26\;\mathrm{\mu C})\left(\dfrac{1\;\mathrm{C}}{10^6\;\mathrm{\mu C}} \right)={26\times 10^{-6}\;\mathrm{C}}

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

E=\dfrac{Q}{4\pi\epsilon_0 r^2}

Substitute numerical values:

E&=\dfrac{24\times 10^{-6}}{4\pi (8.8542\times 10^{-12})(0.6)}\\ &={6.49\times 10^5\;\mathrm{N/C}\;\text{directed radially outward}}}

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.

As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).

Learn more about Gaussian sphere here:

brainly.com/question/2004529

#SPJ4

6 0
2 years ago
Which of the following is NOT a characteristic of a state?
Free_Kalibri [48]
There are four characteristics of a state. population,government,sovereignty,and territory. 
7 0
3 years ago
Read 2 more answers
Two horses, Thunder and Misty, are accelerating a wagon 1.3 m/s2. The force of friction is 75 N. Thunder is pulling with a force
just olya [345]

Answer:

1327 kg

Explanation:

So the net force exerted on the wagon would be the sum of forces from 2 horses subtracted by friction force

F = 1000 + 800 - 75 = 1725 N

This force results in an acceleration of a = 1.3 m/s2. We can use Newton's 2nd law to calculate the mass of the wagon

F = ma

m = F / a = 1725 / 1.3 \approx 1327 kg

3 0
4 years ago
The acceleration due to gravity, g , is constant at sea level on the Earth's surface. However, the acceleration decreases as an
blsea [12.9K]

Answer:

  g    = g₀   [1- 2 h / Re + 3 (h / Re)²]

Explanation:

The law of universal gravitation is

        F = G m Me / Re²

Where g is the universal gravitational constant, m and Me are the mass of the body and the Earth, respectively and R is the distance between them

      F = G Me /Re²  m

We call gravity acceleration a

       g₀ = G Me / Re².

When the body is at a height h above the surface the distance is

            R = Re + h

Therefore  the attractive force is

      F = G Me m / (Re + h)²

Let's take Re's common factor

      F = G Me / Re²  m / (1+ h / Re)²

As Re has a value of 6.37 10⁶ m and the height of the body in general is less than 10⁴ m, the h / Re term is very small, so we can perform a series expansion

         (1+ h / Re)⁻² = 1 -2 h / Re + 6/2 (h / Re) 2 + ...

Let's replace

       F = G Me /Re²   m [1- 2 h / Re + 3 (h / Re)²]

       F = g₀   m  [1- 2 h / Re + 3 (h / Re)²]

If we call the force of attraction at height

     m g =g₀ m  [1- 2 h / Re + 3 (h / Re)²]

       g    = g₀   [1- 2 h / Re + 3 (h / Re)²]

3 0
3 years ago
Other questions:
  • What is a change that will not affect the pressure in a container
    6·2 answers
  • What is a good definition of acceleration
    12·1 answer
  • What must happen for liquid water to become water vapor?
    8·2 answers
  • Solar winds have an influence all the way to about 160 AU from the Sun. About how many kilometers is that? 24,000,000,000 km 48,
    7·2 answers
  • A water tower is idealized as a mass M on top of a uniform and massless beam. The bottom end of the beam is fixed to the ground.
    10·1 answer
  • While teaching about transistors, Mr. Mendoza shows a video of a hand pump being used to draw water from a well. He points out h
    7·2 answers
  • A jet plane passes over you at a height of 5870 m and a speed of Mach 1.47. (a) Find the Mach cone angle. (b) How long after the
    13·1 answer
  • As you increase current, what happens to the strength of an electromagnet?
    9·1 answer
  • Where would you feel the most motion?​
    7·1 answer
  • A tennis ball is hit into the air with a racket. when is the ball’s kinetic energy the greatest? ignore air resistance.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!