Your answer should be D
let me know if I got it wrong
Hope this helped!
consider the motion of the tennis ball in downward direction
Y = vertical displacement = 400 m
a = acceleration = acceleration due to gravity = 9.8 m/s²
v₀ = initial velocity of the ball at the top of building = 10 m/s
v = final velocity of the ball when it hits the ground = ?
using the kinematics equation
v² = v²₀ + 2 a Y
inserting the values
v² = 10² + 2 (9.8) (400)
v = 89.11 m/s
Answer:
potential difference V= 300 volts
Explanation:
Given:
d= 2.0 cm = 0.02m
E = 15 kN/C = 15 × 10³ N/C
For a uniform field between two plates, the Electric Filed Intensity (E) is proportional to the potential difference (V) and inversely proportional to distance between the plates.
E= V/d
⇒ V= E×d = 15 × 10³ N/C × 0.02 m = 300 volts (∴1 Nm/C = 1 J/C= 1 volts)
Answer:
From the narrative in the question, there seem to have been a break failure and the ordered step of response to this problem is to
1) Put on the hazard light to inform other road users of a problem or potential fault with your car and so they should continue their journey with caution.
2) Avoid pressing on the acceleration pedal as this might cause the car to gradually slow down due to friction and gravity
3)Try navigate the car to the service lane. This is the less busy lane where cars are sometimes parked briefly.
4) Continuously pump the breaks to try stop the car. Continuously pumping the breaks might just help you build enough pressure to stop the car because often time, there are some pressure left in the break.
5) At this point, the speed of the car should be relatively slow. So at this point, you could try apply the emergency hand break. Do not pull the emergency hand breaks if the car is on high speed. Doing this may cause the car to skid off the road.
True, the wavelength dies down due to high frequency and low amptitude.