Increase in temperature means:
- The substance is getting hotter
- It's internal energy is rising
Answer:
The correct option is;
Sphere I is positively charged and sphere II is negatively charged
Explanation:
The charging of the spheres by induction is achieved by introducing a charge to the metal spheres that are insulated from the ground to prevent loss of charge by placing them on insulating stand
The two spheres are brought into contact by the connection of a conducting wire between the spheres I and II
The presence of the positively charged sphere III draws attracts electrons towards sphere II while the net positive charge moves towards sphere I
While the spheres I and II are still polarized, the conducting wire is removed while the presence of sphere III continues to keep sphere II negative compared to sphere I
After removing the connecting wire, sphere III is removed leaving the excess negative charge on sphere II and the excess positive charge on sphere I
The net charges then evenly redistribute themselves on each sphere creating two oppositely charged spheres.
the radius of the entire atom was 0.00000001 cm.
<h3>
Answer:</h3>
172.92 °C
<h3>
Explanation:</h3>
Concept being tested: Quantity of heat
We are given;
- Specific heat capacity of copper as 0.09 cal/g°C
- Quantity of heat is 8373 calories
- Mass of copper sample as 538.0 g
We are required to calculate the change in temperature.
- In this case we need to know that the amount of heat absorbed or gained by a substance is given by the product of mass, specific heat capacity and change in temperature.
Therefore, to calculate the change in temperature, ΔT we rearrange the formula;
ΔT = Q ÷ mc
Thus;
ΔT = 8373 cal ÷ (538 g × 0.09 cal/g°C)
= 172.92 °C
Therefore, the change in temperature will be 172.92 °C