Answer:
so angular velocity is 7.13128 sec−1
Explanation:
velocity v = 2.2 m/s
displacement s = 220 mm = 0.220 m
distance d = 510 mm = 0.510 m
to find out
angular velocity
solution
we know that
angular velocity will be velocity ( v) / (displacement² + distance²) .....1
now put all these value in equation 1 and we get angular velocity i.e.
angular velocity = velocity ( v) / (displacement² + distance²)
angular velocity = 2.2 / (0.22² + 0.51²)
angular velocity = 2.2 / 0.3085
angular velocity = 7.13128
so angular velocity is 7.13128 sec−1
Well you’d have a force due to gravity, the normal force which will be perpendicular to the sources (meaning you’ll have components to this vector), and you’d have the force of friction opposing the motion of the box. I’m also assuming there’s no air resistance. In this case you’d have three vector forces.
Answer:
a. 
Explanation:
The equation of the forces along the directions parallel and perpendicular to the slope are:
- Along the parallel direction:
where
:
m = 6.0 kg is the mass of the box
g = 9.8 m/s^2 the acceleration of gravity
is the angle of the slope
is the coefficient of friction
R is the normal reaction
a is the acceleration
- Along the perpendicular direction:
From the 2nd equation, we get an expression for the reaction force:
And substituting into the 1st equation, we can find the acceleration:
Solving for a,
Answer:
0.283m
Explanation:
Speed (v) = wavelength × Frequency (f)
Wavelength = speed/ frequency
Wavelength = 343/ 1210 = 0.283m
Answer:
5.42 m/s
Explanation:
At minimum speed, the tension in the bar will be 0 when the ball is at the top of the arc, so the only force is gravity pulling down.
Sum of forces towards the center of the circle:
∑F = ma
mg = m v²/r
v = √(gr)
v = √(9.8 m/s² × 3.00 m)
v = 5.42 m/s