Answer:
F_n = 5.65E-11 N
d = 1.20682E-31 m
Explanation:
F = 3.8E-09 N
where
m = Mass of electron = 9.109E−31 kilograms
G = Gravitational constant = 6.67E-11 m³/kgs²
x = Distance between them

For 

Dividing the above equations we get

F_n = 5.65E-11 N

d = 1.20682E-31 m
Answer:
The answer is "
".
Explanation:
Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

Potential energy shifts:


Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.



This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.
Answer:
<em>The internal resistance of an ideal ammeter will be zero since it should allow current to pass through it. Voltmeter measures the potential difference, it is connected in parallel. .</em>
Explanation:
<h3>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>!</em></h3>
His role as a field research is that of a: Complete participant!
(Option D.)
~Good luck!