"A pitcher throws a baseball, and then the batter hits a homerun" is the one among the following choices given in the question that <span>best represents potential energy being converted to kinetic energy. The correct option among all the options that are given in the question is the second option or option "2". </span>
Answer:
25 m/s
Explanation:
Given that:
Initial speed, u = 4 m/s
Final velocity, V = 11 m/s
Time, t = 8 seconds
t2, = 16 seconds
Acceleration, a= (change in velocity) / time interval
a = (11 - 4) / 8
a = 7 / 8 = 0.875m/s²
Final velocity, v2 ;
Acceleration * t2
0.875 * 16 = 14
V2 = 14 m/s
Final speed : v + v2 = (11 + 14)m/s = 25m/s
To solve this problem we will apply the linear motion kinematic equations. On these equations we will define the speed as the distance traveled in a space of time, and that speed will be in charge of indicating the reaction rate of the individual. In turn, using the ratio of speed, position and acceleration, we will clear the position and determine the distance necessary for braking.
The relation to express the velocity in terms of position for constant acceleration is as follows

Here,
u = Initial velocity
v= Final velocity
a = Acceleration
= Initial position
s = Final position
PART 1) Calculate the displacement within the reaction time



In this case we can calculate the shortest stopping distance


PART 2)
PART 1) Calculate the displacement within the reaction time



In this case we can calculate the shortest stopping distance


While a person without alcohol would cost 517ft to slow down, under alcoholic substances that distance would be 616ft
B, air blowing from across the field is as a bullet fired from a rifle