The organic product formed when 1−hexyne is treated with H₂O, H₂SO₄, and HgSO₄ will be 2-hexanone (structure attached).
This reaction is an example of an oxymercuration reaction of the organic product 1−hexyne.
Oxymercuration is shown in three steps to the right. The nucleophilic double bond attacks the mercury ion, releasing an acetoxy group. The mercury ion's electron pair attacks carbon on the double bond, generating a positive-charged mercuronium ion. Mercury's dxz and 6s orbitals give electrons to the double bond's lowest unoccupied molecular orbitals.
In the second stage, the nucleophilic H₂O attacks the highly modified carbon, freeing its mercury-bonding electrons. Electrons neutralize mercury ions by collapsing. Water molecules have positive-charged oxygen.
In the third stage, the negatively charged acetoxy ion released in the first step attacks the hydrogen of the water group, generating the waste product HOAc. The two electrons in the oxygen-hydrogen link collapse into oxygen, neutralizing its charge and forming alcohol.
You can also learn about organic products from the following question:
brainly.com/question/13513481
#SPJ4
Somewhat false
observations can be made of a model of the statue of liberty, say, or in real line
The average weight of an atom of an element, formerly based on the
weight of one hydrogen atom taken as a unit or on 1/16 (0.0625) the
weight of an oxygen atom, but after 1961 based on 1/12 the weight of the
carbon-12 atom.
The answer is oxidation.
That is in the redox fueling reaction,
succinate + NAD ↔fumarate + NADPH, the succinate molecule is undergoing oxidation.
As succinate molecule is providing electrons to NAD, so that it can be reduced from NAD to NADPH. So it is losing electrons and undergoing oxidation.
So the answer is oxidation.
Answer:
Carbon tetrachloride would be 2.2 fold heavier than water
Explanation:
Carbon tetrachloride (2.20g/mL) is denser than water (1.00g/mL)