Answer:
After the transfer the pressure inside the 20 L vessel is 0.6 atm.
Explanation:
Considering O2 as an ideal gas, it is at an initial state (1) with V1 = 3L and P1 = 4 atm. And a final state (2) with V2 = 20L. The temperature remain constant at all the process, thus here applies the Boyle-Mariotte law. This law establishes that at a constant temperature an ideal gas the relationship between pressure and volume remain constant at all time:

Therefore, for this problem the step by step explanation is:

Clearing P2 and replacing

First of all, as you seen the gases are noble which means that will not react with each other and in this case each gas create individual pressure.
P
= total pressure
P
= pressure of neon
P
= pressure of argon
P
= pressure of helium {which is required}
P
= P
+ P
+ P
1.25 = 0.68 + 0.35 + P
P
= 1.25 - [0.68 + 0.35] = 0.22 atm
Answer:
vp jokhimon vf dpp gl fl vk hggjuvg7vvohohohohojj
Answer:
The correct option is;
The electronegativity increases
Explanation:
The electronegativity is the measure of an atom's ability to attract a shared electron pair. The electronegativity of an atom is dependent on the atom's atomic number and the separation distance between the electrons in the valence shell and the positively charged nucleus such that an increase in the atomic number results in an increase in electronegativity and an increase in the distance between the valence electrons and the nucleus, leads to a decrease in electronegativity.