Temp must be Kelvin
38 C =
<span>
<span>
<span>
311.15
</span>
</span>
</span>
K
Volume at STP = 8.50 liters * (273.15 / 311.15) * (725 / 760) =
<span>
<span>
<span>
7.1182746306
</span>
</span>
</span>
Liters
The formula to use is:
Volume at STP = Present Volume * (273.15 / Present Temp °K) * (Present Pressure (Torr) / 760)
The atom or an ion which loses electron /electrons is called reducing agent.
Whole moving across a period from left to right metallic character decreases, therefore reducing power element decreases.
Water. The energy from the fission reaction is used to heat water. The water vaporizes which causes pressure rise. The pressure is used to drive a turbine which runs a generator.
I hope this helps.
Answer:
The speed of the 60.0 kg skater should be 0.281 m/s
Explanation:
<u>Step 1: </u>Data given
Mass of skater 1 = 45.0 kg
speed of skater 1 = 0.375 m/s
Mass of skater 2 = 60.0 kg
<u>Step 2:</u> Calculate the speed of skater 2
To solve this problem, we will use 'Conservation of momenton'. This means the momentum before the push equals the momentum after.
momentum p = m*v
Momentum p(before) = momentum p(after)
m1*v1 = m2 * v2
⇒ with m1 = mass of skater 1 = 45.0 kg
⇒ with v1 = the velocity of skater 1 = 0.375 m/s
⇒ with m2 = the mass of skater 2 = 60.0 kg
⇒ with v2 = the velocity of skater 2 = TO BE DETERMINED
45.0 * 0.375 = 60.0 * v2
v2 = (45.0*0.375)/60
v2 = 0.281 m/s
The speed of the 60.0 kg skater should be 0.281 m/s