Well this all depends on the region you would like to know about. One biome would be The Tundra. This biome is a very bitter cold. Some times the temperature can drop to -45f! So your answer more than likely would be Tundra.
Have a wonderful day user!
Answer:
due to the inertia of motion, the fan continues to move for some time even after switching it off.
Answer:
a) ΔV₁ = 21.9 V, b) U₀ = 99.2 10⁻¹² J, c) U_f = 249.9 10⁻¹² J, d) W = 150 10⁻¹² J
Explanation:
Let's find the capacitance of the capacitor
C =
C = 8.85 10⁻¹² (8.00 10⁻⁴) /2.70 10⁻³
C = 2.62 10⁻¹² F
for the initial data let's look for the accumulated charge on the plates
C =
Q₀ = C ΔV
Q₀ = 2.62 10⁻¹² 8.70
Q₀ = 22.8 10⁻¹² C
a) we look for the capacity for the new distance
C₁ = 8.85 10⁻¹² (8.00 10⁻⁴) /6⁴.80 10⁻³
C₁ = 1.04 10⁻¹² F
C₁ = Q₀ / ΔV₁
ΔV₁ = Q₀ / C₁
ΔV₁ = 22.8 10⁻¹² /1.04 10⁻¹²
ΔV₁ = 21.9 V
b) initial stored energy
U₀ =
U₀ = (22.8 10⁻¹²)²/(2 2.62 10⁻¹²)
U₀ = 99.2 10⁻¹² J
c) final stored energy
U_f = (22.8 10⁻¹²) ² /(2 1.04 10⁻⁻¹²)
U_f = 249.9 10⁻¹² J
d) the work of separating the plates
as energy is conserved work must be equal to energy change
W = U_f - U₀
W = (249.2 - 99.2) 10⁻¹²
W = 150 10⁻¹² J
note that as the energy increases the work must be supplied to the system
Answer:
they require a medium
Explanation:
your welcome.............
Answer:
factor that the electron's probability of tunneling through the barrier increase 2.02029
Explanation:
given data
kinetic energy = 10.1 eV
height = 18.2 eV
width = 1.00 nm
wavelength = 546 nm
solution
we know that probability of tunneling is express as
probability of tunneling =
.................1
here C is = 
here h is Planck's constant
c =
c = 2319130863.06
and proton have hf =
= 2.27 ev
so electron K.E = 10.1 + 2.27
KE = 12.37 eV
so decay coefficient inside barrier is
c' =
c' =
c' = 1967510340
so
the factor of incerease in transmisson probability is
probability = 
probability = 
factor probability = 2.02029