Petroleum has less density than water. So, when fire streams are applied to the burning liquid surface at such an angle that hot and / or burning oil is forced over the edge of the tank, the oil then flows down the side of the tank and you are now confronted with a fire on the ground as well as the one in the tank.
<h3>What are the reasons not to use fire streams during deal with burning oil?</h3>
When you spray water on a regular fire, you're attempting to lower the flame's temperature and contain the fire.
Fuel for an oil fire is oil. Temperature and oxidizer are present in a fire (oxygen). Due to the fact that oil is lighter than water, an explosion may result if it floats above water while water sinks beneath oil.
Consequently, water shouldn't be used to put out oil fires.
Learn more about density here:
brainly.com/question/15164682
#SPJ1
Answer:
Explanation:
Suppose initially the plane was horizontal and light was reflected back at some angle θ from the normal .
Now the reflecting surface is twisted so that is becomes inclined at angle alpha .
The reflected light will be deviated from its original direction by angle
2 x alpha .
Similarly when the reflecting surface is further twisted so that it becomes inclined at angle beta then again the reflected beam will deviated by angle
2 x beta
Hence angle between these two reflected beam
= 2 beta - 2 alpha
= 2 ( β - α )
So, angular separation between the rays reflected from the two surfaces
= 2 ( β - α ) .
So we can know what is in space maybe weird or interesting stuff
Answer:
E- The star becomes a red giant (LATEST STAGE)
F- The surface of the star becomes brighter and cooler
C- Pressure from the star's hydrogen-burning shell causes the non burning envelope to expand
A- The shell of hydrogen surrounding the star's nonburning helium core ignites.
D- The star's non burning helium core starts to contract and heat up
B- Pressure in the star's core decreases (EARLIEST STAGE)
(A star moves away from the main sequence once its core runs out of hydrogen to fuse into helium. The energy once supplied by hydrogen burning reduces and the core starts to compress under the force of gravity. This contraction allows the core and surrounding layers to heat up. Finally, the hydrogen shell around the core becomes hot enough to ignite hydrogen burning.
Answer:
true
Explanation:
this the nucleus is located at the centre and contains protons and neutrons