Answer:
Speed = Wavelength x Wave Frequency. In this equation, wavelength is measured in meters and frequency is measured in hertz (Hz), or number of waves per second. Therefore, wave speed is given in meters per second, which is the SI unit for speed.
Answer:
29274.93096 m/s




Explanation:
= Distance at perihelion = 
= Distance at aphelion = 
= Velocity at perihelion = 
= Velocity at aphelion
m = Mass of the Earth = 5.98 × 10²⁴ kg
M = Mass of Sun = 
Here, the angular momentum is conserved

Earth's orbital speed at aphelion is 29274.93096 m/s
Kinetic energy is given by

Kinetic energy at perihelion is 
Potential energy is given by

Potential energy at perihelion is 

Kinetic energy at aphelion is 
Potential energy is given by

Potential energy at aphelion is 
Answer:
The ratio of the time he is above ymax /2 to the time it takes him to go from the floor to that height = 0.707
Explanation:
The mathematical derivation and steps is as shown in the attached file.
Answer:
a. I = 0.76 A
b. Z = 150.74
c. RL₁ = 34.41 , RL₂ = 602.58
d. RL₂ = 602.58
Explanation:
V₁ = 116 V , R₁ = 77.0 Ω , Vc = 364 V , Rc = 473 Ω
a.
Using law of Ohm
V = I * R
I = Vc / Rc = 364 V / 473 Ω
I = 0.76 A
b.
The impedance of the circuit in this case the resistance, capacitance and inductor
V = I * Z
Z = V / I
Z = 116 v / 0.76 A
Z = 150.74
c.
The reactance of the inductor can be find using
Z² = R² + (RL² - Rc²)
Solve to RL'
RL = Rc (+ / -) √ ( Z² - R²)
RL = 473 (+ / -) √ 150.74² 77.0²
RL = 473 (+ / -) (129.58)
RL₁ = 34.41 , RL₂ = 602.58
d.
The higher value have the less angular frequency
RL₂ = 602.58
ω = 1 / √L*C
ω = 1 / √ 602.58 * 473
f = 285.02 Hz