Since weight is the force an object is exerting on another object, and the formula to calculate force is Force = Mass * Acceleration, the answer to your question is 196 N, since the mass of the cannonball times Earth's gravitational pull equals 196 N.
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
Open circuit ......fiend do
Answer:
To have the same kinetic energy the speed of the marble must be 9 times the speed of rock.
Explanation:
The general formula of kinetic energy is given as follows:

where,
K.E = Kinetic Energy
m = mass of the object
v = speed of the object
So, for the marble and rock to have same kinetic energy, we can write:

<u>Hence, to have the same kinetic energy the speed of the marble must be 9 times the speed of rock.</u>
The part of the atom that accounts for electricity is the electron. The correct option among all the options given in the question is option "D". Electrons are capable of moving from one atom to another very easily. The flow of the electrons is actually responsible for electricity to pass. When one electron starts moving in one direction, the other starts following it and this results in the flow of electricity.