Answer:
Part a)

Part B)
percentage increase is
%
Explanation:
Part a)
As we know that the beat frequency is

after increasing the tension the beat frequency is decreased and hence the tension in string B will increase
So we have


Part B)
percentage increase in the tension of the string will be given as


now we have

so we have


so we have

percentage increase is

Given:
1st run: 20 meters North
2nd run: 15 meters East
time: 15 seconds
Average speed = total distance covered / total time taken
Ave. Speed = (20m + 15m) / 15s
Ave. Speed = 35m / 15s
Ave. Speed = 2 1/3 meters per second
Answer:
The answer is "False"
Explanation:
The geologic time scale is the "schedule" for occasions in Earth history. It partitions time into named units of unique time called in descending order of duration "eons, eras, periods, epochs, and ages". The specification of those geologic time units depends on stratigraphy, which is the relationship and order of rock layers. The fossil structures that happen in the stones, nonetheless, give the central methods for setting up a geologic time scale, with the circumstance of the development and vanishing of far and wide species from the fossil record being used to outline the beginnings and endings of ages,, periods, and different stretches.
Geologic time is the broad time period involved by the geologic history of Earth. Formal geologic time starts toward the beginning of the Archean Eon (4.0 billion to 2.5 billion years back) and proceeds to the current day.
(A) power = 0.208 kW = 208 watts
(B) energy = 6.6 x 10^{9} joules
Explanation:
energy consumed per day = 5 kWh
(a) find the power consumed in a day
1 day = 24 hours
power = \frac{energy}{time}
power = \frac{5}{24}
power = 0.208 kW = 208 watts
(b) find the energy consumed in a year
assuming it is not a leap year and number of days = 365 days
1 year = 365 x 24 x 60 x 60 = 31,536,000 seconds
energy = power x time
energy = 208 x 31,536,000
energy = 6.6 x 10^{9} joules