Answer:
First of all, “moist air” is air with a high water vapor content. Water vapor, the invisible, gaseous form of water, occurs in highly variable amounts in the atmosphere. Water is composed of a hydrogen atom and two oxygen atoms (H2O) and has a molecular weight of 18 grams per mole.
Answer:
The answer to your question is : 521.8 m
Explanation:
Data:
Different heights
Time first object (tfo) = 10.7 s
Time second object (tso)= 14.8 s
Initial speed of both objects(vo) = 0 m/s
a = 9.81 m/s²
Formula:
h = vot + 1/2 (a)(t)² but vo = 0 so, h = 1/2 (a)(t)²
Then, height fo h = 1/2 (9.81)(10.7)² = 561.6 m
height so h = 1/2(9,81)(14.8)² = 1074.4 m
Difference in their heights = 1074.4 m - 561.6 m = 521.8 m
Answer:
1 kg
Explanation:
The container has negligible mass and no heat is loss to the surrounding.
Mass of ice = 0.4kg, initial temperature of ice = -29oC, final temperature of the mixture = 26oC, mass of water (m2) = ?kg, initial temperature of water = 80oC, c ( specific heat capacity of water ) = 4200J/kg.K, Lf = heat of fusion of water = 3.36 × 10^5 J/kg
Using the formula:
Quantity of heat gain by ice = Quantity of heat loss by water
Quantity of heat gain by ice = mass of ice × heat of fusion of ice + mass of water × specific heat capacity of water = (0.4 × 3.36 × 10^ 5) + (0.4 × 4200 × (26- (-29) = 13.44 × 10^4 + 9.24 × 10^ 4 = 22.68 × 10^4 J
Quantity of heat loss by water = m2cΔT
Quantity of heat loss by water = m2 ×4200× (80 - 26) = m(226800)
since heat gain = heat loss
22.68 × 10^4 = 226800 m2
divide both side by 226800
226800 / 226800 = m2
m2 = 1 kg
Answer:
Wave speed = 1.25 m/s
Explanation:
Given that the
wavelength = 0.25 m.
Frequency F = 5.0 Hz
The speed of a wave is the product of wave frequency and the wavelength. That is
V = F λ
Where
V = wave speed (m/s)
λ = wavelength (m).
F = frequency (Hz).
Using the formula above gives:
V = 0.25 × 5
V = 1.25 m/s