pH is the measure of the hydrogen ion concentration while pOH is of hydroxide ion concentration in the solution. The pH is 0.939 and pOH is 13.061 pOH.
pH is the concentration of the hydrogen ion released or gained by the species in the solution that depicts the acidity and basicity of the solution.
pOH is the concentration of the hydroxide ion in the solution and is dependent on the pH as an increase in pH decreases the pOH and vice versa.
Both HCl and HBr are strong acids and gets ionized 100 % in the solution. If we let 1 L of solution for the acids then the concentration of the hydrogen ion will be 0.100 M.
Since both completely dissociate we would just add the molarities of each of the H+ ions together and then calculate the PH and POH from that :
HCL(0.040M)----> H+(0.040M) +CL-(0.040M)
HBr(0.075M)----> H+(0.075M) +Br-(0.075M)
so 0.040M (H+ from HCL) + 0.075M (H+ from HBr) = 0.115M H+ in total.
pH is calculated as:
pH = -log[H+]
Substituting values in the equation:
log(0.115M)= 0.939 pH
pOH is calculated as:
14 - pH = pOH
Substituting values in the equation above:
14 - 0.939= 13.061 pOH
Therefore, pH is 0.939 and pOH is 13.061.
Learn more about pH and pOH here:
brainly.com/question/2947041
#SPJ4
Answer:
A. power the Calvin cycle.
Explanation:
because it helps to run theblife of plants with easily
Ductility - a materials ability to stretch, ie if you pull it apart does it stretch to a wire.
density - ratio of volume to mass
conductivity - materials ability to conduct a current.
hopefully with these definitions you can figure out the answer.
Answer : The correct answer for a) 4-bromo-2-iodo-4-methyl pentane and b)5-bromo-2-ethoxy-2-methyl pentane.
A) Reaction with NaI :
Reaction of alkyl halide with NaI is known as Finkelstein Reaction . The acetone is used as solvent . It involves bimolecular nucleophillic substitution rmechanism (SN²) . There is replecement of one halogen with other occurs .
The incoming Nucleophile(Nu⁻) (halide) attacks on carbon from back side , while the leaving group (halide) leaves the compound from front side , simultaneously. The product so formed have is inverted .(Image)
NaI releases I⁻ ion which act as nucelophile and attacks on C1 carbon and Br⁻ from C1 carbon is released . Out of two bromines at C1 and C4 carbons , C1 is primary carbon which is less sterically hindered while C-4 is tertiary carbon and sterically hindered . So it is easy for incoming Nu⁻ to attack on C1 carbon .So Br⁻ is repleaced by I⁻.
1,4-dibromo-4-methylpentane + NaI → 4-bromo-1-iodo-4-methylpentane
The product formed from reaction between 1,4-dibromo-4-methylpentane and NaI is 4-bromo-1-iodo-4-methylpentane . (Image)
B) Reaction with AgNO3 :
Reaction of alkyl halide with AgNO3 in ethanol takes place via SN¹ ( unimolecular nucleophilic substitution ) mechanism . In this leaving group(halide) leaves from alkyl halide forming an intermediate carbocation species . The incoming Nu⁻ attack on this carbocation.
AgNO3 reacts releases Ag⁺ion which abstract Br⁻ of C-4 carbon from 1,4-dibromo-4-methylpentane. THis forms tertiary carbocation which is more stable than carbocation formed by removal of Br from C-1 . The ethanol being more Nucleophilic than NO₃⁻ (from AgNO₃), attacks on this carbocation .(Image )
The product formed as a result is 5-bromo-2-ethoxy-2-methyl pentane.
The degree to which a specified material conducts electricity, calculated as the ratio of the card density in the material to the electric field that causes the flow of current. It is the reciprocal of the resistivity.