Answer:
Explanation:
1. Add the atomic mass of all the elements.
39+55.8+12+14= 120.8
2.Divide atomic mass of potassium by total atomic mass

2. Multiply by 100
%32.3
The answer is D hope this helps
Answer:
I. dipole-dipole
III. dispersion
IV. hydrogen bonding
Explanation:
Intermolecular forces are weak attraction force joining nonpolar and polar molecules together.
London Dispersion Forces are weak attraction force joining non-polar and polar molecules together. e.g O₂, H₂,N₂,Cl₂ and noble gases. The attractions here can be attributed to the fact that a non -polar molecule sometimes becomes polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant.
Dispersion forces are the weakest of all electrical forces that act between atoms and molecules. The force is responsible for liquefaction or solidification of non-polar substances such as noble gas an halogen at low temperatures.
Dipole-Dipole Attractions are forces of attraction existing between polar molecules ( unsymmetrical molecules) i.e molecules that have permanent dipoles such as HCl, CH3NH2 . Such molecules line up such that the positive pole of one molecule attracts the negative pole of another.
Dipole - Dipole attractions are more stronger than the London dispersion forces but weaker than the attraction between full charges carried by ions in ionic crystal lattice.
Hydrogen Bonding is a dipole-dipole intermolecular attraction which occurs when hydrogen is covalently bonded to highly electronegative elements such as nitrogen, oxygen or fluorine. The highly electronegative elements have very strong affinity for electrons. Hence, they attracts the shared pair of electrons in the covalent bonds towards themselves, leaving a partial positive charge on the hydrogen atom and a partial negative charge on the electronegative atom ( nitrogen in the case of CH3NH2 ) . This attractive force is know as hydrogen bonding.
Answer:
Option D. fluorine-18
Explanation:
The attached photo gives the explanation.
In the attached photo, A zX represent the atom that will undergo beta decay to produce oxygen–18.
After the calculation, A zX was found to be fluorine–18.
Answer:
The molar mass of the unknown acid is 386.8 g/mol
Explanation:
Step 1: Data given
Mass of the weak acid = 1.168 grams
volume of NaOH = 28.75 mL = 0.02875 L
Molarity of NaOH = 0.105 M
Since we only know 1 equivalence point, we suppose the acid is monoprotic
Step 2: Calculate moles NaOH
Moles NaOH = molarity NaOH * volume NaOH
Moles NaOH = 0.105 M * 0.02875 L
Moles NaOH = 0.00302 moles
We need 0.00302 moles of weak acid to neutralize the NaOH
Step 3: Calculate molar mass of weak acid
Molar mass = mass / moles
Molar mass = 1.168 grams / 0.00302 moles
Molar mass = 386.8 g/mol
The molar mass of the unknown acid is 386.8 g/mol