The answer is as voltage increases current increases and therefore resistance would remain constant
Adam<span> applies and input force to the pulley as he pulls down to </span>lift the object<span>. As he does this, </span>Adam<span>wonders about how the pulley is </span>helping<span> him
</span>
The average power produced by the soccer player is 710 Watts.
Given the data in the question;
- Mass of the soccer player;

- Energy used by the soccer player;

- Time;

Power; 
Power is simply the amount of energy converted or transferred per unit time. It is expressed as:

We substitute our given values into the equation
![Power = \frac{5100000J}{7200s}\\\\Power = 708.33J/s \\\\Power = 710J/s \ \ \ \ \ [ 2\ Significant\ Figures]\\\\Power = 710W](https://tex.z-dn.net/?f=Power%20%3D%20%5Cfrac%7B5100000J%7D%7B7200s%7D%5C%5C%5C%5CPower%20%3D%20708.33J%2Fs%20%5C%5C%5C%5CPower%20%3D%20710J%2Fs%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B%202%5C%20Significant%5C%20Figures%5D%5C%5C%5C%5CPower%20%3D%20710W)
Therefore, the average power produced by the soccer player is 710 Watts.
Learn more: brainly.com/question/20953664
Hello,
It's D! hope I helped.
Answer: Due that we don't know the initial speed after hitting the ball, we are going to accept that the ball goes up for half of the time and then falls during other half part, that is 3.0 seconds each. Then we know that ball's movement is ruled by the acceleration of gravity formula, as follows: H = Vi * T + 1/2 * g * T^2 V = Vi + g * T where: H is height, Vi initial speed, g gravity acceleration and T time When we only consider the second half of the trajectory, we have that initial speed at the top of that movement is zero, because ball goes up till top, where stops and starts to go down, so : H = 0 * 3 + 1/2 * 32 * 3^2 = 144 ft. So the height of the pop-up is 144 feet.