Answer:
The answer is 4200 J.
Explanation:
The formula of work done is, W = F×D where F is the force of an object and D is the distance. Then you just substitute the values into the equation :
W = F×D
F = 42N
D = 100m
W = 42 × 100
= 4200 J
2e min :)) pls park braliest
Cm^3 is same as mL
13.5 g / 5 mL = 2.7 g/mL
look up densities of metals
aluminum has a density of 2.7 g/mL
Answer:
y = 67.6 feet, y = 114.4/ (22 - 3t)
Explanation:
For this exercise let's use that light travels in a straight line and some trigonometric relationships, the symbols are in the attached diagram
Large triangle Projector up to the screen
tan θ = y / L
For the small triangle. Projector up to the person
tan θ = y₀ / (L-d)
The angle is the same, so we equate the two equations
y₀ / (L -d) = y / L
y = y₀ L / (L-d)
The distance from the screen (d), we look for it with kinematics
v = d / t
d = v t
we replace
y = y₀ L / (L - v t)
y = 5.2 22 / (22 - 3 t)
y = 114.4 (22 - 3t)⁻¹
This is the equation of the shadow height change as a function of time
For the suggested distance the shadow has a height of
y = 114.4 / (22-13)
y = 67.6 feet
Answer:
emf will also be 10 times less as compared to when it has fallen 
Explanation:
We know, from faraday's law-

and 
So, as the height increases the velocity with which it will cross the ring will also increase. 
Given


Now, from 

From equation a and b we see that velocity when dropped from
is 10 times greater when height is 40
so, emf will also be 10 times less as compared to when it has fallen 