Answer:
The value is 
Explanation:
From the question we are told that
The weight of the block is 
The dimension of the block is 
Generally two atmosphere is equivalent to

Generally 1 atm = 
The area of the block would be evaluated using width and height because we need for the smaller surface to be in contact with the ground in order to maximize the pressure and minimize number of blocks
So

=> 
Generally the force due to this blocks is mathematically represented as

Here N is the number of blocks
So

=> 
Answer: wavelength !!
hope this helped :)
Answer:
(a) Vf = 128 ft/s
(b) K.E = 122.8 Btu
Explanation:
(a)
In order to find the velocity of the object just before striking the surface of earth or the final velocity, we use 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = 32.2 ft/s²
h = height = 253 ft
Vf = Final Velocity = ?
Vi = Initial Velocity = 10 ft/s
Therefore,
(2)(32.2 ft/s²)(253 ft) = Vf² - (10 ft/s)²
16293.2 ft²/s² + 100 ft²/s² = Vf²
Vf = √(16393.2 ft²/s²)
<u>Vf = 128 ft/s</u>
<u></u>
(b)
The kinetic energy of the object before it hits the surface of earth is given by:
K.E = (0.5)(m)(Vf)²
where,
m = mass of object = 375 lb
K.E = Kinetic energy of object before it strikes the surface of earth = ?
Therefore,
K.E = (0.5)(375 lb)(128 ft/s)²
K.E = 3073725 lb.ft²/s²
Now, converting this to Btu:
K.E = (3073725 lb.ft²/s²)(1 Btu/25037 lb.ft²/s²)
<u>K.E = 122.8 Btu</u>
Matt Biondi..?
(I don’t know if it’s right, sorry if it is wrong)
:)