Based on your question where a car leaves skid marks 85m long on the highway nad getting to stop. The deceleration of the car is 3m/s^2 to estimate the speed of the car just before braking first is to analyze the problem then apply the necessary formulas. the possible answer is 510m/s
Answer:
The wavelength of the waves created in the swimming pool is 0.4 m
Explanation:
Given;
frequency of the wave, f = 2 Hz
velocity of the wave, v = 0.8 m/s
The wavelength of the wave is given by;
λ = v / f
where;
λ is the wavelength
f is the frequency
v is the wavelength
λ = 0.8 / 2
λ = 0.4 m
Therefore, the wavelength of the waves created in the swimming pool is 0.4 m
Since the track is friction less, block’s kinetic energy at the bottom of the track is equal to its potential energy at the top of the track.
PE = 81 * 9.8 * 3.8 = 3016.44 J
Work = 1/2 * 1888 * d^2
PE = Kinetic energy at the base.
1/2 * 1888 * d^2 = 3016.44
d = 1.78 approx 1.8
F = Ke = 1888 * 1.8 = 3398.4N
Using the law of conservation of momentum
m1u1+m2u2=m1v1+m2v2
Where m1 is mass of first object
m2 is mass of second object
u1 and u2 are initial velocities of object 1 and 2 respectively
v1 and v2 are final velocities of object 1 and 2 respectively
Here, they are moving as a system after collision. Thus they will posses same final velocity
m1u1 +m2u2=v(m1+m2)
Substituting values
600*4+0=v(600+400)
2400=v*1000
v=2.4 m/s
Now momentum of system
p=Mv
p=(600+400)*2.4
p=1000*2.4
Therefore p=2400 kg m/s
Hope this helps :)
Answer:
Both A and B
Explanation:
The interaction of magnetic fields and armature results into a rotational force of the armature hence turning motion. It's important to note that you will always need two magnetic fields in order to experience the force since one magnetic field is at the rotating armature and another at the casing. Considering the arguments of these two technicians, both of them are correct in their arguments.