Kinetic Energy
How to calculate
Kinetic energy is given by K.E.

Where
- m is denoted to mass
- v is denoted to velocity
Magnetic field outside it due to long wire is given by

Magnetic field due to long wire inside wire at any point

Now the ratio of two magnetic field is given by



R = 5.3 mm
A great, helpful, useful definition of acceleration is
<em>A = (change in speed) / (time for the change)</em> . <== you should memorize this
This simple tool will directly solve all 3 problems.
The REASON for assigning these problems for homework is NOT to find the answers. It's to help YOU find out whether you know this definition, to let you go back and review it if you don't, and to give you a chance to practice using it if you do. Noticed that if you get the answers from somebody else, you lose all of these benefits.
The only wrinkle anywhere here is in #3, because when you use this definition, the unit of time has to be the same in both the numerator and the denominator.
So for #3, you have to EITHER change the km/hr to km/sec, OR change the 4sec to a fraction of an hour, before you plug anything into the definition.
Answer:
49.3 N
Explanation:
Given that Pulling up on a rope, you lift a 4.25 kg bucket of water from a well with an acceleration of 1.80 m/s2 . What is the tension in the rope?
The weight of the bucket of water = mg.
Weight = 4.25 × 9.8
Weight = 41.65 N
The tension and the weight will be opposite in direction.
Total force = ma
T - mg = ma
Make tension T the subject of formula
T = ma + mg
T = m ( a + g )
Substitutes all the parameters into the formula
T = 4.25 ( 1.8 + 9.8 )
T = 4.25 ( 11.6 )
T = 49.3 N
Therefore, the tension in the rope is 49.3 N approximately.
A transformer increases and decreases voltage.