An example would be 2 types of motion. It could be rectilinear or projectile motion. There are various equations for each type. Since you don't want me to tell you the answer, I could just express it in words. Then, it will be up to you to translate into mathematical equations.
For rectilinear motion, the distance traveled is equal to the initial velocity times the time, plus one-half of the acceleration times the square of the time. For projectile motion, the maximum distance is equal to the square of the initial velocity multiplied with the square of the sine of the launch angle, all over twice the gravity.
Potential energy = mass x gravity x height
P.E = 4 x 9.8 x 3
P.E = 117.6 J
To solve this problem we will apply the concepts related to the Doppler effect. According to this concept, it is understood as the increase or decrease of the frequency of a sound wave when the source that produces it and the person who captures it move away from each other or approach each other. Mathematically this can be described as

Here,
= Original frequency
= Velocity of the observer
= Velocity of the speed
Our values are,



Using the previous equation,

Rearrange to find the velocity of the observer

Replacing we have that


Therefore the velocity of the observer is 16.2m/s
It will take 267 milliseconds for a sample of radon-218 to decay from 99 grams to 0. 50 grams.
We know that half life of a first order reaction is given by: 
where k = rate of reaction
Given half life = 35 milliseconds
So from this we get k = 0.0198
Now we know that rate of first order reaction is given by: 
where t= time
R'= initial amount = 99 g
R= final amount= 0.50 g
k= rate of reaction = 0.0198
Putting values of these in above equation we get t=267 milliseconds.
i.e. It will take 267 milliseconds for a sample of radon-218 to decay from 99 grams to 0. 50 grams.
To know more about radioactivity visit:
brainly.com/question/20039004
#SPJ4