The answer is b hope this helps
Answer:
idrk its one of them
Step-by-step explanation:
im sorry have a great day
Number of weekend minutes used: x
Number of weekday minutes used: y
This month Nick was billed for 643 minutes:
(1) x+y=643
The charge for these minutes was $35.44
Telephone company charges $0.04 per minute for weekend calls (x)
and $0.08 per minute for calls made on weekdays (y)
(2) 0.04x+0.08y=35.44
We have a system of 2 equations and 2 unkowns:
(1) x+y=643
(2) 0.04x+0.08y=35.44
Using the method of substitution
Isolating x from the first equation:
(1) x+y-y=643-y
(3) x=643-y
Replacing x by 643-y in the second equation
(2) 0.04x+0.08y=35.44
0.04(643-y)+0.08y=35.44
25.72-0.04y+0.08y=35.44
0.04y+25.72=35.44
Solving for y:
0.04y+25.72-25.72=35.44-25.72
0.04y=9.72
Dividing both sides of the equation by 0.04:
0.04y/0.04=9.72/0.04
y=243
Replacing y by 243 in the equation (3)
(3) x=643-y
x=643-243
x=400
Answers:
The number of weekends minutes used was 400
The number of weekdays minutes used was 243
The hole of a function is described as the x-y coordinate wherein the denominator and numerator equates to zero. For the function f(x)= x+3/(x+4)(x+3), the common polynomial given is x-3 which can be equated to zero. Hence, 0 divided 0 means a hole in the function. If x+3 = 0, the hole of the function is at x = -3. ^w^
The base case is the claim that

which reduces to

which is true.
Assume that the inequality holds for <em>n</em> = <em>k </em>; that

We want to show if this is true, then the equality also holds for <em>n</em> = <em>k</em> + 1 ; that

By the induction hypothesis,

Now compare this to the upper bound we seek:

because

in turn because
