Answer:
The gas argon does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Explanation:
The dry atmosphere is composed almost entirely of nitrogen (in a volumetric mixing ratio of 78.1%) and oxygen (20.9%), plus a series of oligogases such as argon (0.93%), helium and gases of greenhouse effect such as carbon dioxide (0.035%) and ozone. In addition, the atmosphere contains water vapor in very variable amounts (about 1%) and aerosols.
Greenhouse gases or greenhouse gases are the gaseous components of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at certain wavelengths of the infrared radiation spectrum emitted by the Earth's surface, the atmosphere and clouds . In the Earth's atmosphere, the main greenhouse gases (GHG) are water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4) and ozone (O3 ). There is also in the atmosphere a series of greenhouse gases (GHG) created entirely by humans, such as halocarbons (compounds containing chlorine, bromine or fluorine and carbon, these compounds can act as potent greenhouse gases in the atmosphere and they are also one of the causes of the depletion of the ozone layer in the atmosphere) regulated by the Montreal Protocol. In addition to CO2, N2O and CH4, the Kyoto Protocol sets standards regarding sulfur hexafluoride (SF6), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).
The difference between argon and greenhouse gases such as CO2 is that the individual atoms in the argon do not have free bonds and therefore do not vibrate. As a consequence, it does not reach a state of vibrational excitation when infrared radiation strikes this gas.
Answer:
Sunlight
Explanation:
Photosynthesis is the process where by plants manufacture their own food through conversion of carbon(iv)oxide and water in presence to sunlight to produce glucose and oxygen as by product.
The reaction is photo-catalyzed and would only take place in the presence of sunlight.
6CO₂ + 6H₂O + sunlight → C₆H₁₂O₆ + 6O₂


- <u>We </u><u>have </u><u>250g </u><u>of </u><u>liquid </u><u>water </u><u>and </u><u>it </u><u>needs </u><u>to </u><u>be </u><u>cool </u><u>at </u><u>temperature </u><u>from </u><u>1</u><u>0</u><u>0</u><u>°</u><u> </u><u>C </u><u>to </u><u>0</u><u>°</u><u> </u><u>C</u>
- <u>Specific </u><u>heat </u><u>of </u><u>water </u><u>is </u><u>4</u><u>.</u><u>1</u><u>8</u><u>0</u><u>J</u><u>/</u><u>g</u><u>°</u><u>C</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the</u><u> </u><u>total</u><u> </u><u>number </u><u>of </u><u>joules </u><u>released</u><u>. </u>

<u>We </u><u>know </u><u>that</u><u>, </u>
Amount of heat energy = mass * specific heat * change in temperature
<u>That </u><u>is, </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>




Hence, 104,500 J of heat is released to cool 250 grams of liquid water from 100° C to 0° C.

<u>We </u><u>have </u><u>to </u><u>tell </u><u>whether </u><u>the </u><u>above </u><u>process </u><u>is </u><u>endothermic </u><u>or </u><u>exothermic </u><u>:</u><u>-</u>
Here, In the above process ΔT is negative and as a result of it Q is also negative that means above process is Exothermic
- <u>Exothermic </u><u>process </u><u>:</u><u>-</u><u> </u><u>It </u><u>is </u><u>the </u><u>process </u><u>in </u><u>which </u><u>heat </u><u>is </u><u>evolved </u><u>. </u>
- <u>Endothermic </u><u>process </u><u>:</u><u>-</u><u> </u><u>It </u><u>is </u><u>the </u><u>process </u><u>in </u><u>which </u><u>heat </u><u>is </u><u>absorbed </u><u>.</u>
Answer: Electronegativity increases as the size of an atom decrease.
Explanation: Electronegativity is the measure of the ability of an atom in a bond to attract electrons to itself.
Electronegativity increases across a period and decreases down a group.
Towards the left of the table, valence shells are less than half full, so these atoms (metals) tend
to lose electrons and have low electronegativity. Towards the right of the table, valence shells are more than half full, so these atoms (nonmetals) tend to gain electrons and have high electronegativity.
Down a group, the number of energy levels (n) increases, and so does the distance between the nucleus and the outermost orbital. The increased distance and the increased shielding weaken the nuclear attraction, and so an atom can’t attract electrons as strongly.