P1V1=P2V2, so P1V1/P2=V2.
2atm x 6.0 L/1.0 atm = 12.0 L
The new volume would be 12.0 Liters
P₄O₁₀ + 6H₂O → 4H₃PO₄
The equation shows us that the molar ratio of
P₄O₁₀ : 6H₂O = 1:6
We also know that one mole of a substance contains 6.02 x 10²³ particles. We can use this to calculate the moles of water.
moles(H₂O) = (5.51 x 10²³) / (6.02 x 10²³)
= 0.92 mole
That means moles of P₄O₁₀ = 0.92 / 6
= 0.15
Each mole of P₄O₁₀ contains 4 moles of P.
moles(P) = 4 x 0.15 = 0.6 mol
Mr of P = 207 grams per mol
Mass of P = 207 x 0.6
= 124.2 grams
P1/T1=P2/T2 Gal Lussac's Law
25 C= 298K (just add 273)
0 C= 273 k
6.00atm/298=P2/273
P2=5.50 atm
Answer:
Explanation:
The relation between equilibrium constant and Ecell is given below .
E⁰cell = (RT / nF ) lnK , F is faraday constant T is 273 + 25 = 298 K
E⁰cell = 1.46 - 1.21 = .25 V
n = 2
Putting the values
.25 = (8.314 x 298 lnK) / (2 x 96485 )
lnK = 19.47
K = 2.85 x 10⁸
2 )
Change in free energy Δ G
Δ G ⁰ = nE⁰ F
n = 4
E⁰ = .4 + .83 = 1.23 V
Δ G ⁰= 4 x 1.23 x 96485
= 474706 J / mol
3 )
E⁰cell = (RT / nF ) lnK
n = 2
1.78 = 8.314 x 298 lnK / 2 x 96485
lnK = 138.638
K = 1.62 x 10⁶⁰
Answer:
0.16mole
Explanation:
To solve this problem, we are going to assume that the number of moles of carbon to be determined is that at STP, standard temperature and pressure.
The number of moles of a substance at STP is given as;
Number of moles =
Given volume = 3.5L
Now, insert the parameters;
Number of moles =
= 0.16mole