117 mL of 0.210 M K₂S solution
Explanation:
The question asks about the volume of 0.210 M K₂S (potassium sulfide) solution required to completely react with 175 mL of 0.140 M Co(NO₃)₂ (cobalt(II) nitrate).
We have the chemical reaction:
K₂S + Co(NO₃)₂ → CoS + 2 KNO₃
molar concentration = number of moles / volume (L)
number of moles = molar concentration × volume
number of moles of Co(NO₃)₂ = 0.140 × 175 = 24.5 mmoles
We see from the chemical reaction that 1 mmole of Co(NO₃)₂ is reacting with 1 mmole of K₂S, so 24.5 mmoles of Co(NO₃)₂ are reacting with 24.5 mmoles of K₂S.
volume = number of moles / molar concentration
volume of K₂S solution = 24.5 / 0.210 = 117 mL
Learn more about:
molar concentration
brainly.com/question/2767031
brainly.com/question/8858482
#learnwithBrainly
Hello!
We use the amount in grams (mass ratio) based on the composition of the elements, see: (in 100 g solution)
C: 83.7% = 83,7 g
H: 16.3% = 16.3 g
Let us use the above mentioned data (in g) and values will be converted to amount of substance (number of moles) by dividing by molecular mass (g / mol) each of the values, lets see:


We note that the values found above are not integers, so let's divide these values by the smallest of them, so that the proportion is not changed, let's see:


Note: So the ratio in the smallest whole numbers of carbon to hydrogen is 3:7, t<span>hus, the minimum or empirical formula found for the compound will be:
</span>
I hope this helps. =)
Diphosphorus heptachloride
Answer:
The correct statement is option c, that is, particles discharged in the air by volcanoes fall to the ground and enrich the soil.
Explanation:
The eruptions of volcanoes lead to the dispersion of ash over the broader regions surrounding the site of eruption. On the basis of the chemistry of the magma, the ash will be comprising different concentrations of soil nutrients. While the major elements found in the magma are oxygen and silica, the eruptions also lead to the discharging of carbon dioxide, water, hydrogen sulfide, sulfur dioxide, and hydrogen chloride.
In supplementation, the eruptions also discharge bits of rocks like pyroxene, potolivine, amphibole, feldspar that are in turn enriched with magnesium, iron, and potassium. As an outcome, the areas which comprise huge deposits of the volcanic soil are quite fertile.
Answer:
0.100 M AlCl₃
Explanation:
The variation of boiling point by the addition of a nonvolatile solute is called ebullioscopy, and the temperature variation is calculated by:
ΔT = W.i
Where W = nsolute/msolvent, and i is the Van't Hoff factor. Because all the substances have the same molarity, n is equal for all of them.
i = final particles/initial particles
C₆H₁₂O₆ don't dissociate, so final particles = initial particles => i = 1;
AlCl₃ dissociates at Al⁺³ and 3Cl⁻, so has 4 final particles and 1 initial particle, i = 4/1 = 4;
NaCl dissociates at Na⁺ and Cl⁻ so has 2 final particles and 1 initial particle, i = 2/1 = 2;
MgCl₂ dissociates at Mg⁺² and 2Cl⁻, so has 3 final particles and 1 initial particle, i = 3/1 = 3.
So, the solution with AlCl₃ will have the highest ΔT, and because of that the highest boiling point.