There are Three main types of concentrating solar thermal power systems: linear concentrating systems, which include public Troughs and linear fresnel reflectors. solar power towers.
Answer:
Explanation:
Initial kinetic energy of particle
= 1/2 m V²
= .5 x .208 x 1.26²
= .165 J
Work done by force = force x displacement
= .766 x .195
= .149 J
This energy will be added up .
Total final kinetic energy
= initial kinetic energy + work done on the particle
= .165 + .149 J
= .314 J .
Because there is no horizontal force on the object, and we all know what happens to velocity in a direction where there is no force.
Area of the bottom = L x W = 3 x 1 = 3 square meters. Pressure = force/area = 12000/3 = 4000 N/square meter = 4 kPa. Since we know the weight of the oil, we don't need to know the depth.
Answer:
u" + 40u' + 49u = 2 sin(t/6)
upp + 40up + 49u = 2 sin(t/6)
Explanation:
Step 1: Data given
mass = 5 kg
L = 20 cm = 0.2 m
F = 10 sin(t/6)N
Fd(t) = - 6 N
u(0) = 0.03 m/s
u(0) = 0
u'(0) = 3 cm/s
Step 2:
ω =kL
k = ω/L = m*g /L = (5*9.8)/0.2 = 245 kg/s²
Since Fd(t) = -γu'(t) we know:
γ =- Fd(t) / u'(t) = 6N/ 0.03 m/s = 200 Ns/m
The initial value problem which describes the motion of the mass is given by
5u" + 200u' + 245u = 10 sin(t/6) u(0) = 0 ; u'(0) = 0.03
This is equivalent to:
u" + 40u' + 49u = 2 sin(t/6) u(0) = 0 ; u'(0) = 0.03
upp + 40up + 49u = 2 sin(t/6)
With u in m and t in s